실점을 막는 것은 득점을 하는 것과 똑같이 중요하다. 점수를 덜 줘서 이기는 것이나 더 내서 이기는 것이나 마찬가지인 것이다. 아니... 실제로는 실점을 줄이는 쪽이 조금 더 유리하다. Pythagorean Expectation 포스팅을 기억하시는지? 실점을 줄이는 쪽이 득점을 더 하는 것보다 약간 기대 승률이 높게 나오는 것이다.

실점을 줄이는 것은 투수와 수비의 몫이다. 특히 야구는 투수놀음이라는 말이 흔히 쓰일 만큼, 투수의 중요성은 막대하다. 수비가 형편없어도, 투수가 상대타자를 모조리 탈삼진으로 돌려세우면 여전히 무실점으로 막아내는 것이 가능하다. 하지만, 투수가 형편없다면, 수비가 아무리 좋아도 안타를 한 개도 허용하지 않는 것은 불가능하다. 심지어 인플레이 된 공은 무조건 잡을 정도로 수비력이 좋더라도, 투수가 던지는 족족 홈런을 허용할 경우 어떻게 해 볼 도리가 없는 것이다.

따라서, 투수의 능력을 측정하는 방법으로 ERA, 즉 투수가 얼마나 점수(자책점)를 내주었는지를 살펴보게 된 것은 어찌보면 당연한 일이었다. ERA는 꽤 오랫동안 투수를 평가하는 척도로 널리 이용되었고, 지금도 WHIP와 함께 가장 흔히 사용되고 있다.

오늘은 ERA 및 ERA의 대체 스탯들을 살펴보게 될 것이다. 그동안 타자에 대해 많이 썼으나 투수에 대해서는 다소 소홀한 감이 있었기에, 투수에 대해 쓰고 싶었던 참에 마침 VEB에서 vivaelpujols의 잘 정리된 글을 보게 되었다. 각각의 개념에 익숙치 않은 분들을 위하여, 좀 더 자세히 설명해 보고자 한다.


1. ERA (Earned Run Average)

ERA를 모르시는 분들은 아마 거의 없으리라 생각되지만, 기초를 다지는 의미에서 다시 한 번 짚고 넘어가도록 하겠다. 먼저 ER(Earned Run, 자책점)에 대한 이해가 필요한데, 투수의 잘못으로 내준 점수를 자책점이라고 하고, 투수의 잘못이 아닌 실점을 비자책점이라고 한다. 안타나 홈런, 볼넷 등으로 내준 점수는 기본적으로 자책점이지만, 만약 주자가 수비수의 에러로 인해 출루한 경우에는 비자책점으로 분류한다. 에러는 투수의 잘못이 아니라는 것이다. 여기서 재미있는 것은 투수 본인의 에러로 점수가 난 경우에도 비자책점이 된다는 것이다. 공을 던지는 사람으로서의 투수와 야수로서의 투수를 구분하고 있다는 의미이다.

ERA는 9이닝당 자책점의 비율을 의미한다. 즉, 다음과 같이 계산된다.

ERA = ER * 9 / IP

ERA에 대한 비판은 여러 가지 관점에서 생각할 수 있다. 우선, ER을 계산하는 방식의 문제이다. 예를 들어, 에러로 주자가 출루한 후 적시타를 맞아 주자가 홈인했다면, 이는 비자책점이 된다. 하지만, 에러는 수비수의 잘못이더라도 이후 적시타를 맞은 것은 일정 부분 투수의 책임이 있다. 그럼에도 불구하고 이 점수는 그냥 비자책점이 될 뿐으로, 투수에게 책임을 묻지 않는다. 또한, 2사 만루 상황에서 구원투수가 등판하여 주자일소 3루타를 맞고 3실점한 후 후속타자를 아웃시켜 이닝을 마무리한 경우, 모든 실점의 책임은 주자 3명을 내보낸 앞의 투수에게만 전가될 뿐, 3루타를 맞은 구원투수는 무실점으로 기록된다. 2사 만루에서 불을 끄는 것이 그의 임무였고, 그는 임무에 실패했지만, ER은 계산되지 않고, 따라서 ERA도 전혀 나빠지지 않는다.

다음은 좀 더 근본적인 문제인데... 점수를 내 주지 않는 것이 투수 혼자의 공이 아니라는 점이다. 실점을 막는 것은 투수와 수비 모두의 공이다. 뛰어난 수비수들이 뒤에 있다면, 투수의 ERA가 낮아지는 것은 당연한 것이다. 즉 실점을 얼마나 했는가는 팀 전체의 스탯인데도, ERA는 마치 투수 혼자만의 스탯인 것처럼 취급한다.

그리고... 자책점과 비자책점을 가르는 주요한 변수인 "에러"에 대해서도 문제를 제기할 수 있다. 특정 타구가 에러인지 안타인지를 판단하는 것은 일정 부분 기록자의 주관이 개입된다. (내야안타는 특히 그렇다.) 또한, 수비수는 어려운 타구를 무리하게 건드려서 에러를 낼 수도 있지만, 그냥 보수적으로 수비하여 안타를 내줄 수도 있다. 같은 타구가 수비수의 능력과 성향에 따라 에러도 될 수 있고 안타도 될 수 있는 것이다. 투수의 능력과 상관없이 자책/비자책이 결정되고, 이를 통해 투수가 평가받는 것은 불합리하다고 할 수 있다.

혹은 투수에 따라 단지 운이 없어서 안타를 유난히 많이 맞아 실점을 많이 하는 경우도 있을 것이다. BABIP는 상당 부분이 운에 의해 좌우되고, BABIP가 높으면 아무래도 실점을 하기 쉬워지므로, 자책점과 비자책점을 아무리 잘 분리해 낸다고 해도 운의 개입은 피할 도리가 없다. 운이 없어 실점을 많이 했는데 ERA가 높다고 욕을 먹게 된다면 꽤나 억울할 것이다.


2. FIP (Fielding Independent Pitching)

FIP는 옛날에 블로그에서 이미 다룬 바 있으나, 다시 한 번 정리해 본다.

실점을 기준으로 투수를 평가하게 되면 "수비"와 "운"이라는 방해 요소가 섞이는 것을 피할 수가 없으므로, 이런 투수와 상관없는 요소를 완전히 제거해버린 새로운 스탯이 개발되었다. 바로 FIP이다. FIP는 Tom Tango에 의해 처음 개발되었고, 이후 여러 사람에 의해 개량되었다.

과거 BABIP에 대한 선구적인 연구로 유명해진 Voros McCracken의 경우 BABIP는 투수의 능력과 거의 아무런 상관이 없다는 극단적인 주장을 했었는데, 이후 여러 사람의 추가 연구에 의해 BABIP는 운, 수비의 능력, 투수의 능력, 구장 효과 등 다양한 요인에 의해 결정된다는 결과를 얻게 되었다. 이 중에서 가장 큰 영향을 끼치는 Factor는 역시 "운"으로 나타났다.

FIP는 타자가 방망이로 공을 맞춰서 인플레이 된 경우, 즉 BABIP의 영향을 받는 경우를 모두 무시한다. 여기서 "인플레이"라 함은 타구가 페어 지역에 떨어져서 수비가 개입하게 된 모든 경우를 말하는 것이다. (파울플라이는 파울 지역에 떨어진 공이지만 수비수가 잡아서 아웃 처리하였으므로 역시 인플레이로 간주한다.) 이런 부분을 모두 제거하고 나면, 남는 것은 수비수들이 공에 손을 댈래야 댈 수 없는 플레이들만 남게 된다. 바로 홈런, 볼넷, 사사구, 삼진이 그것이다. FIP는 이들 스탯만을 이용하여 아래와 같이 계산한다.

FIP = (13*HR + 3*(BB-IBB+HBP) - 2*K) / IP + C

여기에서 C는 FIP를 ERA와 유사한 Scale로 만들어 주기 위한 상수(Constant)이다. 이 상수는 대체로 3.20 부근의 값을 가지는데, 매년 조금씩 변화한다. C를 구하는 방법은 아래와 같다.

C = (9*lgER + 2*lgK - 13*lgHR - 3*(lgBB-lgIBB+lgHBP)) / lgIP

여기에서 lgER은 League Total ER을 의미하며, lgHR, lgBB 등도 마찬가지로 리그 전체 합계를 이용한다. 위와 아래의 식을 비교해 보면, 이렇게 C를 계산할 경우 리그 평균 ERA와 리그 평균 FIP는 항상 똑같은 값을 가지게 됨을 알 수 있다. 참고로, 2009년 메이저리그의 C값은 3.18이며, 리그 평균 ERA와 리그 평균 FIP는 모두 4.32였다. 이렇게 만들어 준 덕에, FIP는 ERA와 유사한 값을 가지게 되므로 한 눈에 알아보기가 쉽다. 3.00 ERA가 좋은 것처럼, 3.00 FIP도 좋은 것이다.

FIP의 문제는, 인플레이된 공이 어떻게 되었는지를 완전히 무시하는 것이다. 위에서 언급했듯이, 비록 BABIP의 가장 큰 요소는 "운"이지만, 투수의 능력도 분명 한 몫을 하고 있는 것이다. 우리가 상식적으로 알고 있듯이, 투수의 구위가 좋으면 타자들이 좋은 타구를 잘 만들어내지 못하는 것은 일정 부분 사실이다. ERA가 투수의 능력과 상관없는 부분을 지나치게 많이 포함하고 있다면, FIP는 반대로 투수의 능력이 실제로 작용하는 부분을 일부 무시한다는 결점을 가지고 있다. 또한, FIP에는 park adjust가 이루어지지 않았다는 것도 문제로 지적된다. 그럼에도 불구하고, 수비와 운이라는 가장 큰 노이즈 요소를 배제하였다는 점에서, FIP는 투수의 순수한 능력을 평가하는 좋은 잣대가 된다.

FIP는 FangraphsThe Hardball Times 에서 찾을 수 있다.


3. xFIP

xFIP는 기본적으로 FIP와 계산 방법이 같은데, 한 가지 중요한 차이가 있다. 위의 FIP 식에서 실제 피홈런 숫자를 넣는 대신 고정된 HR/FB 비율을 이용하여 계산된 이론적 피홈런 숫자를 넣는 것이다. 이렇게 하는 이유는... 볼넷과 삼진, 사사구는 투수의 능력에 의한 것이지만, 피홈런의 경우 "운"과 "구장 효과"가 많이 작용되는 점을 고려하여 이를 보정한 것이다. 일반적으로 HR/FB 비율은 0.11이 이용된다. 투수의 능력 이외의 요소가 작용하는 부분을 제거하고자 함에 있어서, FIP보다도 더욱 철저한 스탯이라고 할 수 있다.

xFIP는 The Hardball Time에서 찾을 수 있다. 참고로 Adam Wainwright의 페이지를 링크하였다.


4. tRA

tRA는 FIP의 약점인 "인플레이된 공을 완전히 배제하는 것"을 보완하고자 Graham MacAree가 개발한 스탯이다. tRA의 기본 컨셉은, 마치 wOBA로 공격력을 측정할 때와 같이, Run Expectancy로부터 각 이벤트의 Expected Run Value를 구하여 이를 9이닝(27아웃)에 대한 예상 실점으로 바꾸어 산출하는 것이다.

이 페이지는 Stat Corner의 tRA 설명 페이지이다. 이 페이지에는 2008년의 이벤트별 Run Value가 나와 있는데, 이를 보면 tRA에 사용되는 스탯 혹은 이벤트를 알 수 있다. 즉, 삼진, 볼넷, 사사구, 라인드라이브, 그라운드볼, 외야플라이, 내야플라이, 홈런 갯수가 계산에 사용되는 것이다. 각각의 스탯에 각각의 Run Value를 곱하여, 27아웃을 기록하는 동안 예상되는 Run Value의 합을 구하면 바로 9이닝 당 예상 실점이 된다. ERA가 9이닝당 자책점인 데 비해, tRA는 위의 이벤트 별 스탯을 바탕으로 9이닝당 예상 실점을 구하는 것이다. 이 과정에서, 수비의 수준과 홈구장 등은 모두 중립으로 조정된다.

이 tRA는 Stat Corner 및 Fangraphs에서 만날 수 있다.

중립적인 환경을 만들기 위해 조정을 실시하고, 타자의 방망이에 맞은 타구에 대한 투수의 영향력을 반영하고자 한 점에서, FIP보다 진보한 아이디어의 스탯이라고 할 수 있다. 그러나, Stat Corner와 Fangraphs에서 동일한 선수들을 비교해 보면, 같은 스탯임에도 불구하고 tRA가 서로 다르게 계산되어 있음을 발견하게 된다. 예를 들어, Chris Carpenter의 tRA는 Fangraphs에서 3.02, Stat Corner에서 2.77로 나온다. 이러한 차이가 발생하는 이유는, tRA가 라인드라이브, 그라운드볼, 플라이 등 인플레이 된 공을 어떻게 기록하느냐에 따라 달라질 수밖에 없기 때문이다. 타자가 친 공이 라인드라이브인지, 플라이인지, 그라운드볼인지를 결정하기 위해, Fangraphs는 BIS의 PbP 데이터를 이용하는 반면 Stat Corner는 MLB Gameday의 PbP 데이터를 이용한다. 특히 플라이볼과 라인드라이브의 구분에는 어느 정도 애매한 부분이 존재할 수밖에 없으므로, 기록자의 주관적 판단에 따라 기록이 달라지고, 결국 tRA 값이 영향을 받게 된다. FIP를 보완하기 위해 인플레이 된 결과물을 반영한 결과, 기록자의 주관적 판단이 개입되는 오차가 생긴 것이다. 이것이 tRA의 단점이다.


5. tRA*

tRA*는 tRA에 회귀분석을 적용한 스탯이다. 삼진 비율, 볼넷 비율, 사사구 비율, 그라운드볼 비율 등 모든 이벤트의 발생 비율에 대해서 해당 투수의 커리어 year-to-year correlation을 바탕으로 해당 시즌에 몇 명의 타자를 상대했는 지를 감안하여 적절한 수준의 regression을 해 주는 것이다. tRA*는 투수들 간의 퍼포먼스를 비교하기보다는 해당 투수가 앞으로 어떤 성적을 내줄 지를 예상하기 위한 목적으로 개발되었다.

tRA*는 Stat Corner에서 찾을 수 있다.



그럼 어떤 스탯이 투수를 평가하는 데 가장 좋은 스탯일까? 지금까지 살펴 보았듯이 단 하나의 정답은 없다. ERA에는 투수의 능력과 상관없는 다른 요소가 많이 개입되어 있다. FIP, xFIP는 투수의 능력 이외의 다른 것을 제거하려고 하다가 투수의 능력이 작용하는 부분까지 잘라내 버렸다. tRA는 이를 보완하려고 시도하였으나 대신 Play by Play 기록자의 주관이라는 새로운 노이즈가 추가되었다.

개인적으로는 이들 중 FIP 및 xFIP를 주로 참고하는 편이다. ERA에 포함되는 이런저런 외부 요소가 너무 많아서 도무지 신뢰할 수가 없기 때문이다. FIP에는 빠진 부분이 분명 존재하나, "운"이라는 요소를 배제하는 부분에서는 꽤 성공적인 스탯이라고 할 수 있다. 몇 가지의 Raw Stat만으로 쉽게 계산되는 것도 큰 장점이다. 또한 좋은 FIP를 받는 것(볼넷과 홈런을 덜 허용하고 삼진을 많이 잡는 것)이 수비의 질과 상관없이 실점을 막는 데 좋은 결과를 얻게 한다는 점은 부인할 수 없을 것이다.


투수에 관한 다음 포스팅에서는 투구 이닝 및 투수의 가치(Value: 투수의 WAR)에 대해 써 볼 예정이다.

(이 글은 한국야구팬사이트에서도 보실 수 있습니다.)


Today's Music : Lynyrd Skynyrd - Free Bird (Live)



이쯤에서 이 블로그와 뗄래야 뗄 수 없는 곡을 소개해야 할 것 같다. FreeRedbird라는 필명은 이 곡의 제목에서 온 것이다. Viva El Birdos에서 활동하기 위해 SB Nation에 가입하려고 할 때... 아이디를 뭘로 할까 고민하던 중 이 곡을 듣게 되었다. 결국 곡 제목을 아이디로 쓰기로 했고, Cardinals 팬이라는 정체성을 나타내기 위해 Red를 중간에 삽입하여 FreeRedbird가 탄생한 것이다. 그런데... 지나고 나서 생각해보니 FreeRedbird보다는 RedFreebird가 좀 더 낫지 않았을까 하는 후회가 들기도 한다. ^^

어쨌거나... Gary Rossington의 슬라이드 기타, 그리고 곡 중후반부에 이어지는 기타 3대의 현란한 연주가 잊을 수 없는 감동을 선사하는 명곡이다.

Posted by FreeRedbird
:

최근 Fangraphs나 The Hardball Times 같은 세이버메트릭스 사이트들에 힘입어 소위 advanced stat 들이 유행하게 되었다. FIP, wOBA, WPA, UZR, tRA 등이 대표적인 예인데, 그 중에서도 특히 많이 쓰이고 있는 것이 바로 FIP 이다.

FIPFielding Independent Pitching의 약어로, 단어 안에 그 의미가 이미 드러나 있다. 즉 "수비와 무관한 투구 stat"이라는 것이다. 자세한 계산 방법은 뒤에서 알아보고, 우선 전통적인 stat의 문제점부터 살펴보자.

전통적으로 사용되는 투수의 stat으로는 W-L, ERA, WHIP 등을 꼽을 수 있겠다. W-L, 즉 승-패는 투수를 평가하는데 거의 아무짝에도 쓸모가 없는 상징적인 숫자에 불과하다. 투수가 아무리 잘 던져도 타선이 뒷받침해주지 않으면 투수는 절대로 승수를 쌓을 수가 없는 것이다. 즉 투수의 승수와 패수는 팀 전체의 합작품이지 투수의 능력을 나타내는 지표가 될 수 없다. (이런 별 의미없는 숫자가 Cy Young 상의 중요 기준이 되고 있는 듯하여 씁쓸하다...)

ERA와 WHIP의 경우는 승-패 만큼 단순하지는 않으므로.. 조금 더 들여다볼 필요가 있다. ERAEarned Runs Average, 즉 평균자책점을 의미한다. ("방어율"이라는 기존의 번역은 의미상 부적절하다.) 여기서 "자책점"은 투수에게 책임이 있는 실점을 의미한다. 즉, 에러 등으로 주자가 출루하지 않고 순전히 안타와 볼넷, 사사구, 보크 등으로 내준 점수를 의미하는 것이다. 그러면 투수가 자책점을 얼마나 내줬는지는 충분히 의미있는 지표가 될 수 있지 않을까? 세이버메트릭스의 답은 "Hell no... 절대 아니다..." 이다.


볼넷이나 사사구는 당연히 투수의 책임이고 여기에 이의를 제기하는 사람은 없다. (스트라이크존이 유난히 넓거나 좁은 특정 심판을 탓할 수도 있겠지만... 그건 통계의 범위를 벗어나는 통제불가능한 변수이므로 따지지 말자.) 논쟁의 핵심은 안타에 있다. 도대체 안타의 어디까지가 투수의 책임일까? 똑같은 타구에 대해서... 좋은 수비수는 공을 잡아서 아웃으로 처리할 수 있지만, 나쁜 수비수는 공을 못잡고 안타로 만들어 버린다. "자책점"의 빌미가 된 안타 중에는 인간의 능력으로는 어쩔 수 없는 아주 잘 맞은 진짜 안타들도 있겠지만, 수비수의 형편없는 수비로 인해 안타가 되어버린 운 좋은 타구들도 제법 들어 있을 수 있는 것이다. 따라서, 안타의 발생 확률은 투수 뒤에 서 있는 수비수들의 수비 능력에 종속되게 되고, 결국 안타를 포함하는 stat으로 투수의 능력을 정확히 평가하기는 어렵다는 결론이 나오게 된다.

WHIPWalks and Hits per Innings Pitched의 약어이다. 우리말로 뭐라고 번역하는 지는 잘 모르겠다. 계산식은 (BB+H)/IP로 매우 단순하다. 투수가 한 이닝에 주자를 얼마나 내보내는지를 볼 수 있다고 해서 한때 각광받던 stat이었다. 그러나, 위의 ERA와 마찬가지로 WHIP도 피안타 수가 직접적으로 결과값에 영향을 미치는 구조를 가지고 있고, 따라서 안타의 수비 종속성에 대한 같은 논리를 통해 투수의 능력을 정확히 평가하기에는 부족하다는 결론을 얻게 된다.

그럼 어떤 대안이 있을까? 세이버메트릭스 진영에서 가장 널리 쓰이고 있는 것이 바로 FIP 이다. 수비수들의 능력과 상관없이 오직 투수만이 관여하는 수치인 삼진, 볼넷(사사구 포함), 홈런 만으로 투수의 진짜 능력을 판별하는 공식을 만들어낸 것이다.

Tom Tango가 개발하고 이후 여러 사람의 손을 거쳐 개량된 FIP의 일반적인 공식은 다음과 같다.

FIP = (13*HR+3*(BB-IBB+HBP)-2K)/IP + 3.20

HR은 홈런, BB는 볼넷, IBB는 고의사구, HBP는 사구(데드볼), IP는 투구 이닝 수를 의미한다.
맨 끝의 3.20은 상수인데... FIP의 결과값을 ERA(또는 RA)과 유사한 스케일로 치환하기 위해 더해 주는 값이며, 이 값은 각 사이트에 따라 자체적으로 조금씩 다른 값을 쓰고 있다.

예를 들어... 박찬호의 전성기였던 1998년과 2000, 2001년 성적을 보자.
1998년: 15승 9패 3.71 ERA, 220 2/3 IP, 1.34 WHIP, 16 HR, 97 BB, 191 K, 1 IBB, 11 HBP
2000년: 18승 10패 3.27 ERA, 226 IP, 1.31 WHIP, 21 HR, 124 BB, 217 K, 4 IBB, 12 HBP
2001년: 15승 11패 3.50 ERA, 234 IP, 1.17 WHIP, 23 HR, 91 BB, 218 K, 1 IBB, 20 HBP


승-패와 ERA만 보면 2000년이 가장 좋았던 것 같이 보인다. WHIP를 본다면 2001년이 더 나은 것 같기도 하고.... 그럼 위의 공식에 따라 FIP를 구해 보면 어떨까?
1998 FIP = 3.87
2000 FIP = 4.24
2001 FIP = 4.02


오히려 1998년이 가장 좋은 것으로 나온다.

Fangraphs의 박찬호 페이지를 보면, FIP 값이 조금 다르게 되어 있다.
1998 FIP = 3.82
2000 FIP = 4.23
2001 FIP = 3.89


이렇게 값이 다른 이유는, Fangraphs가 상수로 3.20을 사용하지 않고 매 년 리그별 평균 실점(RA)을 가지고 적절한 상수를 계산하여 연도별로 조금씩 다르게 적용하고 있기 때문이다. 이렇게 조정된 FIP값을 쓰더라도, 1998년이 가장 좋았고 2000년이 가장 떨어진다는 점에는 변함이 없다.

그럼 왜 2000년의 ERA는 3.27로 가장 낮은데, FIP는 4.23 혹은 4.24로 편차가 크게 나타나는 것일까? 여러 가지 요인이 있을 수 있으나, 2000년의 BABIP(Batting Average on Balls In Play)가 .266으로 낮았다는 것을 생각해 볼 수 있다. 박찬호의 career 평균 BABIP는 .294이고, 이는 메이저리그 평균과 유사한 수치이다. BABIP가 특정한 해에 낮았다는 것은 타자들이 친 공이 유난히 야수 정면으로 가는 일이 많았다든지... 혹은 그 해 수비수들이 유난히 수비를 잘했다든지... 즉 "운"과 "동료들의 특별한 도움"이 작용했음을 의미한다고 볼 수 있다. BABIP에 대해서는 후에 따로 글을 쓰도록 하겠다. 반면 1998년 BABIP는 .298이었다. 이런 차이가 ERA와 FIP의 차이에 한 몫을 했을 것이다. (흥미로운 것은 2001년에도 그의 BABIP가 .266 이었다는 것이다. ERA와 FIP의 괴리에 대해 BABIP 한 가지 만으로는 설명하기 어렵다는 증거가 된다.)

혹 ERA와 FIP의 괴리 현상에 대해 더 많은 정보를 얻고 싶다면 괴리 현상의 대표 격으로 늘상 언급되는 Javier Vasquez에 대한 Fangraphs의 글을 참고하기 바란다.
Posted by FreeRedbird
: