우리는 그 동안 타자의 생산성을 평가하기 위한 보다 발전된 스탯으로 wOBA, wRAA 등을 살펴보았고, 타자를 종합적으로 평가하기 위한 WAR의 계산 방법도 살펴본 바 있다.
그런데, OPS 대신 wOBA나 wRAA를 사용할 수 있다고 하더라도, 이 블로그에 wOBA를 소개하는 글을 쓸 당시 OPS+를 대체할 개량 스탯은 아직 없었다. OPS+는 비록 OPS가 갖는 단점을 그대로 가지고 있기는 하지만, 계산 과정에서 파크 팩터를 적용하여 홈구장으로 인한 왜곡을 보정하고, 리그 평균에 대한 상대적인 값을 계산함으로써 리그에 대해서도 보정해 주는 효과를 가진다. 또한 항상 100이 평균이 되므로, 특정 타자가 리그 평균에 비해 얼마나 좋은(혹은 나쁜) 활약을 했는지를 한 눈에 쉽게 알 수 있다는 장점이 있다.
그러던 중, Fangraphs에 wRC+가 소개되었다. 이는 한 마디로 wOBA의 OPS+ 버전이라고 할 수 있는데... 이제부터 자세히 살펴보고자 한다.
설명을 위해, 이전에 WAR 계산 설명 때 사용하였던 2009년 Chase Utley와 Joe Mauer의 스탯을 다시 이용하기로 하였다. 계산에 사용된 엑셀파일을 첨부하니 참고하시기 바란다.
wRC는 weighted RC이다. Bill James의 RC와 유사한 것 같지만 계산 방법은 매우 다르다. wRC는 앞의 w에서 알 수 있듯이, wOBA를 기반으로 계산된 것이다.
RAR이나 WAR 같은 스탯은 "Above Replacement Level"이므로, 비교 대상이 Replacement Level 플레이어이다. 즉, WAR=0이면 Replacement Level 플레이어라는 이야기이다. 또한 wRAA는 "Above Average"이므로, 비교 대상은 리그 평균이다. 즉, wRAA=0이면 타격 기여 수준이 딱 리그 평균 수준이라는 이야기가 된다.
반면, wRC는 비교 대상이 "0"이다. 타석에 마네킹을 그냥 세워두어서 마네킹이 .000/.000/.000을 기록했을 때와 비교해서 해당 타자의 득점 기여 수준을 평가하는 것이다. (마네킹이 볼넷이나 HBP로 출루하는 어이없는 경우는 없다고 치자. -_-;;; )
이러한 wRC의 개념을 생각하면, wRAA로부터 쉽게 계산이 가능하다. 해당 타자의 wRAA를 알고 있으면, 해당 타자가 리그 평균보다 얼마나 더 많은 기여를 했는지 알 수 있으므로, 이제 여기에다가 마네킹과 리그 평균 사이의 차이를 더해 주면 바로 wRC가 된다. 다시 말해서 아래와 같은 식이 된다.
wRC = wRAA + 리그 평균 타자의 득점 기여 수준 = wRAA + (lgR/lgPA)*PA lgR : 리그 전체 득점 lgPA : 리그 전체 타석
구체적인 예를 통해 계산을 해 보자.
위의 첨부 파일을 보면 2009년 Chase Utley의 스탯이 있다. 그의 wRAA는 파크팩터를 적용하여 계산하면 37.45가 나온다. (주: Fangraphs는 wRC 계산 시에는 파크팩터를 쓰지 않고, wRC+를 계산할 때 파크팩터를 사용하는데, 여기서는 그냥 wRC 계산 때부터 파크팩터를 적용하도록 하겠다.)
이제 "리그 평균 타자의 득점 기여 수준"을 계산해 보자. 2009년 NL 리그 전체 기록을 보면, 99,531 타석(PA)에서 11,482 득점이 발생하였다. 따라서, 1 타석의 평균적인 득점 기여 수준은 11482/99531 = 0.12 점 임을 알 수 있다.
Utley는 2009년에 687 PA를 기록했으므로, 그가 2009년에 기록한 wRC는 687 PA를 통해 기록한 wRAA에 687 PA를 리그 평균 타자가 기록했을 때의 득점 기여 수준을 합치면 될 것이다. 즉, 아래와 같이 계산하면 된다.
Chase Utley의 wRC = Utley와 마네킹의 연간 득점 기여 수준 격차 = Utley와 리그 평균의 연간 득점 기여 수준 격차 + 리그 평균과 마네킹의 연간 득점 기여 수준 격차 = wRAA + (0.12 * 687) = 116.70
Chase Utley는 687 타석에서 마네킹을 세워두는 것에 비해 팀 득점에 116.70점을 기여한 것이다.
혹은, wRAA가 아니라 wOBA로부터 계산하고자 한다면, wRAA = ((wOBA-lgwOBA)/1.15)*PA 를 wRAA 자리에 대입하면 된다.
wRC = wRAA + (lgR / lgPA) * PA = (wOBA - lgwOBA) / 1.15) * PA + (lgR / lgPA) * PA = ((wOBA - lgwOBA) / 1.15 + (lgR / lgPA)) * PA
2. wRC+
이제 이 116.70점이 같은 리그의 다른 타자들과 비교해서 얼마나 대단한 정도의 공격 기여 수준인지를 살펴보자. wRC+는 아래와 같이 계산한다.
wRC+ = (((wRAA / PA) / (lgR / lgPA)) + 1) * 100
계산식을 보면, 1타석당 득점 기여 수준을 가지고 비교를 하게 됨을 알 수 있다.
분모를 보면, 리그 전체의 1타석당 득점 기여 수준이다. 위의 예에서는 0.12로 계산되었다.
분자를 보면, wRAA를 해당 타자의 타석으로 나누고 있으므로, 1타석당 해당 타자와 리그 평균간 득점 기여 수준의 차이가 된다. Chase Utley의 경우는 37.45/687 = 0.0545가 된다.
여기에 리그 평균을 100으로 만들어주기 위해 1을 더하고 100을 곱해서 계산한다.
Chase Utley의 wRC+는 이렇게 해서 147이 된다. 첨부파일을 참고하시기 바란다.
Joe Mauer의 경우에는 AL에 속해 있으므로 lgR과 lgPA 자리에 AL의 데이터를 넣어 주어야 한다. 이렇게 해서 계산하면 wRC는 133.23, wRC+는 176이 나온다. 엄청난 시즌을 보냈음을 알 수 있다. (Fangraphs에서는 Mauer의 wRC+를 174로 계산하고 있다. 파크팩터의 적용 방법, 소숫점 반올림 등에 따른 약간의 오차가 발생함을 감안하시기 바란다.)
OPS+와 비교하면 어떨까? 2009년 Utley의 OPS+는 136이었고, Mauer의 OPS+는 170이었다. 이것은 OPS+가 특히 Utley를 저평가하고 있음을 의미한다.
2009 시즌 wRC+와 OPS+의 메이저리그 TOP 10 비교이다. OPS+는 Baseball-Reference에서 가져왔고, wRC+는 아직 시즌별 비교데이터가 제공되지 않아 Fangraphs에서 선수별 데이터를 직접 일일이 클릭해서 만들었다. -_-;;
wRC+ Albert Pujols 184 Joe Mauer 174 Prince Fielder 163 Adrian Gonzalez 158 Joey Votto 157 Hanley Ramirez 155 Ben Zobrist 154 Ryan Braun 153 Derrek Lee 153 Kevin Youkilis 153
OPS+ Albert Pujols 188 Joe Mauer 170 Prince Fielder 168 Adrian Golzalez 166 Joey Votto 155 Mark Teixeira 149 Hanley Ramirez 148 Ryan Braun 148 Alex Rodriguez 147 Ben Zobrist 146
참고 : 왜 wOBA+나 wRAA+를 쓰지 않고 wRC+를 쓰는 것일까?
Chase Utley의 wOBA+를 계산해 보자. Utley의 2009년 wOBA는 0.390이고, NL 평균 wOBA는 0.328이었으므로,
((0.390 / 0.328) * 100 = 119
이렇게 하면 OPS+나 wRC+에 비해 훨씬 좁은 범위에 결과값이 분포하는 스탯이 만들어진다. 우리에게 익숙한 OPS+와 유사한 스케일인 wRC+를 사용하는 것이 이해도 빠르고 한 눈에 알아보기도 쉬울 것이다.
한편, wRAA+는 계산이 불가능하다. 리그 평균이 0이기 때문에, 분모가 0이 되어 버리는 것이다.
(주: 타자의 WAR를 구하는 글은 이미 이전에 포스팅한 바 있었으나, 일부 잘못된 계산을 바로잡고 내용을 보충하여 다시 포스팅 하기로 하였다. 또한, 이제 2009 시즌이 끝났으므로 계산에서 사용한 예도 2009년의 스탯들로 바꾸었다.)
Chase Utley : 항상 실력에 비해 충분한 인정을 받지 못하고 있는, 심각하게 저평가된 플레이어이다.
타자가 팀의 득점에 기여하는 방법은 크게 보아 공격(타격), 수비, 주루가 있을 것이다. 그래서 좋은 타자를 이야기할 때 "공, 수, 주 3박자를 두루 갖췄다"는 표현을 사용하기도 한다.
각각의 타자에 대해서 이러한 득점 기여의 정도가 어느 정도인지를 측정하기 위해, 이전의 글들을 통해 공격, 수비, 주루의 측면을 차례로 검토해 왔다. 또한 비교 대상으로서 절대적 기준이 되는 Replacement Level 및 수비 포지션에 따른 조정 수준에 대해서도 살펴본 바 있다. 각각의 항목에 대해 다시 한번씩 훑어 보시면 이해에 도움이 되시리라고 생각하여 링크를 걸어 본다.
이제 RAR을 WAR로 환산해야 하는데... 원칙적으로는 팀 전체 득점과 실점에 대해 해당 플레이이어의 RAR이 미치는 점수 변화 정도를 가지고 Pythagorean Expectation의 식에 넣어서 계산하는 것이 맞지만... Pythagorean 관련 포스팅에서 언급한 바와 같이, "10점 득점 = 1승"의 단순한 계산 방법이 의외로 높은 정확도를 가지므로, 계산의 편의를 위해 이를 활용하는 것이 좋을 것이다. 즉, 아래와 같이 쉽게 계산할 수 있다.
WAR = RAR/10
이제부터 실제 예를 통해서 자세히 살펴보자. 계산에 필요한 Raw Data는 Baseball-Reference과 Fangraphs에서 얻었으며, 이후의 모든 계산은 직접 하였다. 계산에 사용한 엑셀 sheet를 첨부하였으므로, 계산 결과를 쉽게 확인하실 수 있을 것이다.
(NIBB : 고의사구가 아닌 볼넷, IBB : 고의사구, RBOE : 에러로 인해 타자가 출루한 경우)
순서에 따라 차례차례 계산해 보면...
1-1. Park Adjust
먼저 wOBA를 계산하기에 앞서서, 구장으로 인한 효과를 보정해 주는 것이 계산의 신뢰도를 높이는 데 도움이 될 것이다. Park Factor를 계산하는 방법은 여러 가지가 있고, 개인적으로는 어떤 방법이 가장 좋은지 아직 결론을 내리지 못하고 있다. 일단 여기서는 Fantasy411의 2006-08년 Park Factor를 빌려와서 사용하도록 하겠다. 이 자료는 엑셀 파일에 포함되어 있다. (단, RBOE의 Park Factor는 어디에서도 얻을 수가 없었다. 어차피 Utley의 RBOE가 4에 불과하여 Park Factor가 있더라도 그다지 영향은 없었겠지만...)
정밀한 조정을 위해서는 Utley의 경기별 홈구장을 일일이 찾아서 계산해야겠지만... 너무 품이 많이 들므로, 다음과 같은 간단한 방법을 사용하였다. 1) 타석의 절반은 홈, 절반은 원정에서 기록한 것으로 본다. 2) 원정구장들의 평균 Park Factor는 100이다. (실제로는 홈구장을 뺀 15개 NL 구장의 평균이므로 100에 근접한 값일 것이나, 큰 오차는 없으리라고 본다) 3) 따라서, 조정된 Park Factor는 (100 + 홈구장 Park Factor) / 2 로 계산할 수 있다.
계산시 1B, 2B, 3B, HR에 대해 Park Factor를 적용하였으나, 볼넷이나 HBP, 도루 등의 경우는 구장별 차이가 있다고 인정하기가 어려운 관계로 반영하지 않았다. 이런 부분에도 구장으로 인한 차이가 존재한다고 생각한다면... 취향에 따라 해당 스탯의 Park Factor를 찾아서 추가적으로 적용해 주면 된다. 또한, 1루타에 대한 Park Factor가 따로 없으므로... 안타 총 합계(H)의 Park Factor와 장타(XBH)의 Park Factor, 그리고 실제 2009년 메이저리그 안타, 장타 기록으로부터 1루타의 Park Factor를 유추하였다.
이렇게 조정한 Utley의 09년 성적은 아래와 같다. 687 PA, 97 1B, 28 2B, 5 3B, 28 HR, 85 NIBB, 3 IBB, 24 HBP, 4 RBOE
역시 홈런이 많은 홈구장을 쓰다 보니, 조정 결과 홈런이 약간 줄어든 것을 확인할 수 있다.
1-2. wOBA 및 wRAA 계산
wOBA 및 wRAA의 계산식 및 이론적 근거는 위의 링크를 참고하시고... Park Factor를 적용한 기록을 가지고 Utley의 wOBA를 계산한 결과는 다음과 같다. (엑셀 sheet 참조)
(Park Adjusted) wOBA = 0.390
한편, 2008년 NL 전체 타격 기록을 가지고 구한 리그 평균 wOBA는 0.328이므로, 이를 이용하여 Utley의 wRAA를 구하면 다음과 같다. (엑셀 sheet 참조)
wRAA = 37.45 Runs
즉, 2009년 시즌의 Chase Utley는 NL 평균 타자에 비해 타격으로 팀 득점에 37.45점 더 기여했다는 의미가 된다.
2. wRAA를 Batting RAR로 : Replacement Level의 설정
wRAA는 Runs Above Average라는 단어의 의미에서도 알 수 있듯이 리그 평균과 비교하는 스탯이므로, 이를 Replacement Level과의 비교로 조정하여 RAR(Runs Above Replacement leve)로 만들 필요가 있다. 이전부터 한 시즌을 기준으로 리그 평균 수준의 주전 선수와 Replacement Level의 땜빵 선수 차이에는 20점 혹은 2승 정도의 차이가 난다는 경험적 분석 결과들이 있었는데, 작년 말에 THT에 게재된 Sean Smith의 뛰어난 연구는 이를 다시 한 번 확인시켜 주었다. 즉, 600 PA를 기준으로 리그 평균과 Replacement Level의 사이에는 20점(20 Runs)의 기여 수준 격차가 있다는 것이다. 이러한 격차를 wRAA 값에 더해주면, RAR로 쉽게 환산된다.
이 값이 Utley의 Replacenemt Level 값이 된다. 즉, Utley 대신 Replacement Level 선수를 시즌 내내 기용했다면, 아마도 22.9점 만큼 덜 득점했을 것이라는 이야기이다.
3. 수비 기여 수준 : UZR
이전 포스팅에서 ZR을 개선한 합리적인 스탯으로 UZR, TZ(TZR), +/-를 소개한 바 있다. 그 포스팅에서 언급한 바와 같이, +/-는 유료 정보이며 연말에 발표되고, TZ의 경우 현역 메이저리거들에 대한 데이터는 아직 작업중인 상태여서 조회가 되지 않으므로, 현재로서는 UZR이 거의 유일한 선택이라고 할 수 있다. UZR은 Fangraphs에 거의 실시간으로 계속 업데이트 되므로, 지난 시즌의 결과물 뿐 아니라 현재 진행중인 시즌에 대해서도 누구가 쉽고 빠르게 정보를 얻을 수 있다. 뿐만 아니라, TZ의 창시자인 Sean Smith조차 UZR이 가장 뛰어난 수비 스탯이라고 인정하고 있으므로, UZR을 쓰는 것이 여러 모로 좋은 선택이라고 생각한다.
Utley는 2009년 1년 내내 2루수로만 출장했으며, 1년간의 누적 UZR 값은 10.8이다.
UZR = 10.8 Runs
이는 Utley가 2008년 시즌에 수비를 통해 실점을 평균 2루수보다 10.8점 더 방지하는 정도의 기여를 했음을 의미한다.
이 조정 점수는 162게임의 풀 시즌을 기준으로 만들어진 것임에 유의해야 한다. 162게임을 이닝으로 환산하면 1,458 이닝이 되므로, 실제 수비에 참가한 이닝을 1458로 나눠서 위의 조정 점수를 곱해 주면 실제 해당 시즌의 조정 점수가 될 것이다.
Utley는 2008년에 2루에서 1357 이닝을 뛰었다. 따라서...
(2.5 x 1357) / 1458 = 2.33 Runs
이 점수가 Utley의 수비 포지션에 따른 최종 조정 점수가 된다.
5. 주루플레이의 기여 수준: 도루 성공과 실패
Fangraphs는 주루플레이에 대해 도루 성공/실패만을 반영하고 있는데, 이는 Fangraphs가 다른 주루 능력에 관심이 없어서라기보다는 무료로 이용 가능한 공개 주루 스탯이 존재하지 않기 때문일 것이다. 주루 스탯을 제공하는 곳이 BP와 Bill James Online 정도밖에 없는데, 둘 다 Fangraphs에 자료를 그냥 링크해 줄 생각은 없는 듯하다.
Fangraphs의 선수 페이지에서 맨 아래에 있는 Value를 보면, Running 항목이 따로 존재하지 않고 도루 성공/실패를 Batting에 합산하고 있다. 평균적으로 도루 성공은 0.175, 도루 실패는 -0.467점의 가치(Run Value)를 지니므로, 도루 및 도루 실패의 갯수에 Run Value를 곱해서 계산하는 것이다.
Utley는 2009년에 23 SB, 0 CS를 기록하였으므로...
23 x 0.175 - 0 x 0.467 = 4.03 Runs
도루를 통해 4.03점 만큼 팀 득점에 기여하였다는 결론을 얻을 수 있다.
6. RAR 및 WAR의 산출
이제 모든 구성 요소의 계산을 다 했으므로, 지금까지 나온 값을 모두 더하면 타자의 총 기여 수준, 혹은 그의 가치(Value)가 된다.
즉, 거칠게 표현하자면, 2009년 Chase Utley는 7.8승짜리 플레이어였다는 것이다.
2009년 Phillies는 93승 69패를 기록하였는데, 만약 Utley 대신 1년 내내 Miguel Cairo와 같은 Replacement Level 플레이어들로 2루를 돌려막기 했다면, Phillies는 아마도 85승 77패를 기록했을 것이라는 이야기이다. 이렇게 되면 Florida Marlins와 동률이 되므로, 플레이오프 진출을 장담할 수 없게 되어 버린다. 이것이 바로 진정한 스타 플레이어 한 명의 위력이다.
Fangraphs의 Utley 페이지를 보면, 2009년 그의 WAR를 7.6로 계산하고 있다. Fangraphs의 WAR 계산 로직은 이 글에서 내가 설명해 온 바와 동일하다. 0.2의 오차는 타격 기여도 계산에서 생겨난 것인데, 내가 타격에 37.45, 도루에 4.03으로 총 41.48점으로 계산한 데 비해 Fangraphs는 둘을 합쳐 39.4로 계산하고 있다. 오차의 원인으로 생각되는 것은 사용한 Park Factor 데이터의 차이 및 Park Factor 적용 방법의 차이가 가장 유력하다. 또한, 소숫점 반올림으로 인한 약간의 오차도 발생할 수 있다.
이번에는 Joe Mauer의 2009년 성적을 이용해서 WAR를 계산하여 보자. (역시 첨부한 엑셀 sheet에 계산한 결과물이 들어 있다.)
다음은 Mauer의 2009년 타격 Raw Stat이다. 606 PA, 131 1B, 30 2B, 1 3B, 28 HR, 14 IBB, 62 NIBB, 2 HBP, 3 RBOE
Twins의 홈인 Metrodome의 Park Factor를 고려하여 위의 스탯을 조정해 주면 아래와 같다. 606 PA, 132 1B, 30 2B, 1 3B, 30 HR, 14 IBB, 62 NIBB, 2 HBP, 3 RBOE
이 기록으로부터 wOBA 및 wRAA를 계산하면, wOBA = 0.449 wRAA = 57.50
Replacement Level = 20 / 600 * 608 = 20.2
수비 : UZR = 0 (포수는 UZR데이터가 없다.)
포지션 조정 : Mauer는 포수로 939 이닝을 뛰었으며, 지명타자로 28게임에 출장하였다. 따라서... 12.5 x 939 / 1458 - 17.5 x 28 / 162 = 5.03
도루성공/실패 : 4 SB, 1 CS이므로 4 x 0.175 - 1 x 0.467 = 0.23
이제 모두 더해주면, RAR = 57.5(타격) + 20.2(Replacement) + 0(수비) + 5.03(포지션 조정) + 0.23(도루) = 82.96 WAR = RAR/10 = 8.3
즉, 2009년 Mauer는 8.3승짜리 플레이어였다는 것이다.
Fangraphs의 계산 결과는 8.2이다. 역시 0.1의 차이는 Park Factor 및 소수점 반올림 등으로 인한 오차로 생각된다.
여기까지가 Fangraphs의 WAR 계산 방법인데... 주루플레이가 도루 성공/실패만 단순히 계산되고 있고, 포수 UZR이 없어 포수 수비력의 차이가 반영되지 않는다는 문제점이 있음을 알 수 있다. 이제 이를 보완하는 방법을 찾아 보자.
주루플레이에 대해서는 이전에 소개한 바와 같이, Baseball Prospectus의 EqBRR을 대신 사용할 수 있다. Chase Utley의 경우 2009년 EqBRR이 8.80으로, 매우 뛰어난 주자임을 알 수 있다. 도루성공/실패로 계산한 숫자 대신 이 EqBRR을 대신 넣어서 계산하면 아래와 같다.
Fangraphs에서 저평가되었던 주루 능력을 제대로 평가해준 결과, Chase Utley는 이제 8.2승짜리 선수가 되었다. 워낙 주루능력이 좋은 선수이다 보니, 주루를 이렇게 반영해주지 않았더라면 억울할 뻔 했다.
이번에는 Joe Mauer를 재평가해 보자.
EqBRR에 의하면 Joe Mauer의 주루 능력은 -3.60으로 나온다. 포수들은 일반적으로 좋은 주자가 아니라는 상식과 일치하고 있다. 포수 수비력은 아직 의견이 분분한 분야이나... 이 글을 참고하면 Mauer는 2009년 수비에서 4.4점 기여한 것으로 되어 있다. 역시 Mauer는 수비가 좋은 포수라는 상식과 일치하는 결과이다.
수비에서 플러스 된 대신 주루에서 마이너스가 되어 RAR은 0.5점 올라가는 데 그쳤다. 결국 8.3 WAR로 거의 같은 결과를 얻게 됨을 알 수 있다. 비록 결과값은 비슷하지만 이것은 주루와 수비를 제대로 반영해 준 값이다.
나로서는 위의 방법이 크게 어렵지 않으면서도 타자의 공/수/주를 모두 커버하고 있어서 현재로서는 가장 좋은 툴이라고 생각하고 소개한 것이지만, 이러한 방법이 타자를 평가하는 단 하나의 절대적인 기준이 될 수는 없다. 취향에 따라 특정 스탯을 넣을 수도, 뺄 수도 있다. 예를 들어 EqA를 선호한다면 위의 계산에서 wRAA와 EqBRR을 빼고 대신 EqA로부터 Batting+Running Runs를 유도하여 넣어 주면 될 것이다. 혹 수비 스탯은 아무 것도 믿을 수 없다는 매우 회의적인 시각을 가진 사람이라면, UZR를 빼 버리면 될 것이다. 어떻게 활용하느냐는 각자의 몫이다.
또한, 세이버메트릭스에 절대적으로 의존하기보다는 활용 가능한 모든 정보(스카우팅 등)를 총 동원하여 여러 가지 각도에서 선수를 평가하는 것이 더욱 좋을 것이다. 물론 전문적인 스카우팅 훈련을 받거나 직접 선수생활을 해보지 않은 보통의 팬들이 자기 스스로의 안목을 가질 수 있는 방법은 역시 세이버메트릭스 만한 것이 없다고 생각하지만...
Today's Music : Phil Collins Playing Drums!!! (with Chester Thompson)
Phil Collins는 무수히 많은 히트곡을 만든 송라이터이자 보컬리스트로서 유명하지만, 사실은 그런 것 이전에 매우 탁월한 드러머였다. 특히 Genesis의 초기 앨범들을 들어보면 Collins의 드럼 실력에 정말 놀라게 될 것이다. Collins는 공연시에 주로 자신의 드럼 연주로 오프닝을 장식하곤 했는데, 위의 두 라이브 클립에서는 세션 드러머 Chester Thompson(역시 아주 뛰어난 드러머임)과 환상적인 호흡을 보여준다.
Collins는 올해 가을, 아쉽게도 드러머로서 은퇴를 발표했다. 척수 부위의 부상으로 인해 스틱을 잡을 수조차 없게 되었기에, 50년간 쳐 왔던 드럼을 더 이상 칠 수 없게 되었다는 것이다. 너무나도 안타까운 일이 아닐 수 없다.
(주: 이 글의 내용 및 첨부된 계산 파일은 일부 오류를 포함하고 있으므로, 내용을 수정하여 다시 올린 새 글을 참고하시기 바란다.)
Chase Utley : 2008년 NL MVP 투표에서는 고작 15위에 머물렀지만, WAR로 보면 Pujols에 이어 메이저리그 전체 2위였다. 올 시즌 타자 WAR 리스트에서도 Pujols와 Hanley Ramirez에 이어 3위를 달리고 있지만, MVP 투표에서는 또 10위권 밖으로 밀려날 것이다. 항상 실력에 비해 충분한 인정을 받지 못하고 있는, 심각하게 저평가된 플레이어이다.
타자가 팀의 득점에 기여하는 방법은 크게 보아 공격(타격), 수비, 주루가 있을 것이다. 그래서 좋은 타자를 이야기할 때 "공, 수, 주 3박자를 두루 갖췄다"는 표현을 사용하기도 한다.
각각의 타자에 대해서 이러한 득점 기여의 정도가 어느 정도인지를 측정하기 위해, 지금까지 공격, 수비, 주루의 측면을 차례로 검토해 왔다. 또한 비교 대상으로서 절대적 기준이 되는 Replacement Level 및 수비 포지션에 따른 조정 수준에 대해서도 살펴본 바 있다. 이 글을 쓸 때까지 다소 시간 간격이 있었으므로... 다시 한번씩 훑어 보시면 이해에 도움이 되시리라고 생각하여 링크를 걸어 본다.
이제 RAR을 WAR로 환산해야 하는데... 원칙적으로는 팀 전체 득점과 실점에 대해 해당 플레이이어의 RAR이 미치는 점수 변화 정도를 가지고 Pythagorean Expectation의 식에 넣어서 계산하는 것이 맞지만... Pythagorean 관련 포스팅에서 언급한 바와 같이, "10점 득점 = 1승"의 단순한 계산 방법이 의외로 높은 정확도를 가지므로, 계산의 편의를 위해 이를 활용하는 것이 좋을 것이다. 즉, 아래와 같이 쉽게 계산할 수 있다.
WAR = RAR/10
이제부터 실제 예를 통해서 자세히 살펴보자.
계산에 필요한 Raw Data는 Retrosheet, Baseball-Reference, Fangraphs의 세 사이트에서 얻었으며, 이후의 모든 계산은 직접 하였다. 계산에 사용한 엑셀 sheet를 첨부하였으므로, 계산 결과를 쉽게 확인하실 수 있을 것이다.
(NIBB : 고의사구가 아닌 볼넷, IBB : 고의사구, RBOE : 에러로 인해 타자가 출루한 경우)
순서에 따라 차례차례 계산해 보면...
1-1. Park Adjust
먼저 wOBA를 계산하기에 앞서서, 구장으로 인한 효과를 보정해 주는 것이 계산의 신뢰도를 높이는 데 도움이 될 것이다. Park Factor를 계산하는 방법은 여러 가지가 있고, 개인적으로는 어떤 방법이 가장 좋은지 아직 결론을 내리지 못하고 있다. 일단 여기서는 Fantasy411의 2006-08년 Park Factor를 빌려와서 사용하도록 하겠다. (단, RBOE의 Park Factor는 어디에서도 얻을 수가 없었다. 어차피 Utley의 RBOE가 5에 불과하여 Park Factor가 있더라도 그다지 영향은 없었겠지만...)
정밀한 조정을 위해서는 Utley의 경기별 홈구장을 일일이 찾아서 계산해야겠지만... 너무 품이 많이 들므로, 다음과 같은 간단한 방법을 사용하였다. 1) 타석의 절반은 홈, 절반은 원정에서 기록한 것으로 본다. 2) 원정구장들의 평균 Park Factor는 100이다. (실제로는 홈구장을 뺀 15개 NL 구장의 평균이므로 100에 근접한 값일 것이나, 큰 오차는 없으리라고 본다) 3) 따라서, 홈 구장 Park Factor의 50%를 Raw Stat에 적용하여 보정한다.
이렇게 조정한 Utley의 성적은 아래와 같다. 707 PA, 98 1B, 41 2B, 4 3B, 29 HR, 51 NIBB, 13 IBB, 27 HBP, 5 RBOE
홈런이 줄어든 것이 눈에 띈다. 나머지 기록은 거의 변화 없음을 알 수 있다.
1-2. wOBA 및 wRAA 계산
이전의 포스팅에서 wOBA를 소개할 때에 비하여, 지금은 wOBA를 더욱 신뢰하게 되었다. 최근 THT의 Colin Wyers가 수행한 연구에 의하면, 90년대 및 2000년대의 메이저리그 기록을 가지고 분석할 경우 wOBA가 EqA보다도 정확도가 좀 더 높은 것으로 나타났기 때문이다. 현재 세이버메트릭스 진영에서 득점 기여 수준을 측정하는 가장 우수한 스탯으로 여겨지는 wOBA와 EqA의 승부(둘 다 실제 득점과의 correlation이 0.97로 매우 높으므로, 정말 뛰어난 스탯들이다)에서 wOBA가 근소하게나마 더 우수한 것으로 판명되었기 때문에, 타자의 공격 기여도를 측정함에 있어 wOBA를 근간으로 삼는 것은 현재로서는 최선의 방법이라고 생각된다. 또한, wOBA가 EqA보다 훨씬 계산식이 간단하고 이해하기 쉽다는 것도 큰 장점이다.
계산식 및 이론적 근거는 이전의 포스팅을 참고하시고... Park Factor를 적용한 기록을 가지고 Utley의 wOBA를 계산한 결과는 다음과 같다. (앞에 첨부한 엑셀 sheet 참조)
(Park Adjusted) wOBA = 0.382
한편, 2008년 NL 전체 타격 기록을 가지고 구한 리그 평균 wOBA는 0.330이므로, 이를 이용하여 Utley의 wRAA를 구하면 다음과 같다. (엑셀 sheet 참조)
wRAA = 32.05 Runs
즉, 2008년 시즌의 Chase Utley는 NL 평균 타자에 비해 팀 득점에 32.05점 더 기여했다는 의미가 된다.
2. wRAA를 Batting RAR로 : Replacement Level의 설정
wRAA는 Runs Above Average라는 단어의 의미에서도 알 수 있듯이 리그 평균과 비교하는 스탯이므로, 이를 Replacement Level과의 비교로 조정하여 RAR(Runs Above Replacement leve)로 만들 필요가 있다. 이전부터 한 시즌을 기준으로 리그 평균 수준의 주전 선수와 Replacement Level의 땜빵 선수 차이에는 20점 혹은 2승 정도의 차이가 난다는 경험적 분석 결과들이 있었는데, 작년 말에 THT에 게재된 Sean Smith의 뛰어난 연구는 이를 다시 한 번 확인시켜 주었다. 즉, 600 PA를 기준으로 리그 평균과 Replacement Level의 사이에는 20점(20 Runs)의 기여 수준 격차가 있다는 것이다. 이러한 격차를 wRAA 값에 더해주면, RAR로 쉽게 환산된다.
이전의 포스팅에서 ZR을 개선한 합리적인 스탯으로 UZR, TZ(TZR), +/-를 소개한 바 있다. 그 포스팅에서 언급한 바와 같이, +/-는 유료 정보이며 연말에 발표되고, TZ의 경우 현역 메이저리거들에 대한 데이터는 아직 작업중인 상태여서 조회가 되지 않으므로, 현재로서는 UZR이 거의 유일한 선택이라고 할 수 있다. UZR은 Fangraphs에 거의 실시간으로 계속 업데이트 되므로, 지난 시즌의 결과물 뿐 아니라 현재 진행중인 시즌에 대해서도 누구가 쉽고 빠르게 정보를 얻을 수 있다. 뿐만 아니라, TZ의 창시자인 Sean Smith조차 UZR이 가장 뛰어난 수비 스탯이라고 인정하고 있으므로, TZ나 +/- 대신 UZR을 쓰는 것이 그다지 나쁜 선택은 아닐 것 같다.
여담이지만, 2000년대 초중반에 Cardinals는 UZR의 창시자인 MGL(Mitchel Lichtman)에게 상당히 큰 돈을 주고 UZR 데이터를 독점한 바 있다. UZR이 Fangraphs에 공개될 수 있었던 것은 이러한 독점 계약이 종료되었기 때문이다. 이런 것으로 보면 Cardinals도 이전부터 세이버메트릭스에 상당한 관심과 이해가 있었던 것 같다.
다시 본론으로 돌아가서... Utley는 2루에서 20.2 Runs, 1루에서 0.4 Runs를 기록하였으므로, 이를 간단히 더해주면 된다.
UZR = 20.6 Runs
이는 Utley가 2008년 시즌에 수비를 통해 실점을 20.6점 방지하는 정도의 기여를 했음을 의미한다.
즉, 거칠게 표현하자면, 2008년 Chase Utley는 8승짜리 플레이어였다는 것이다.
2008년 Phillies는 92승 70패를 기록하였는데, 만약 Utley 대신 1년 내내 Tadahito Iguchi나 Eric Brunett과 같은 Replacement Level 플레이어들로 2루를 돌려막기 했다면, Phillies는 아마도 84승 78패를 기록했을 것이라는 이야기이다. 이런 성적으로는 플레이오프에 나갈 수 없었을 것이고, 따라서 월드시리즈 우승도 할 수 없었을 것이다. 이것이 바로 진정한 스타 플레이어 한 명의 위력이다.
Fangraphs의 Utley 페이지를 보면, 2008년 그의 WAR를 8.1로 계산하고 있다. Fangraphs의 로직은 이 글에서 내가 설명해 온 바와 동일하다고 보면 된다. 0.1의 오차는 타격 기여도 계산에서 생겨난 것인데, 아마도 wOBA 계산 방법이 약간 다르고, Park Factor의 적용에도 차이가 있을 것으로 추정된다. 또한, Fangraphs는 주루를 따로 표시하지 않고, 타격에 합산하여 놓고 있다.
한편, 첨부된 엑셀 파일에는 작년 AL MVP였던 Dustin Pedroia의 WAR도 계산되어 있다. 다만, 이쪽은 Fangraphs가 6.6 WAR로 계산했는데 반해 엑셀 sheet에서는 5.8이 되어서, 차이가 0.8로 제법 크게 나타나고 있다. 실제 계산된 값을 보시면 알 수 있듯이 타격 기여 수준을 빼고는 값이 완전히 동일하므로... 역시 Park Factor의 차이가 작용하고 있는 것으로 추정된다. (Fangraphs는 어떤 Park Factor를 적용하고 있는지 명시하지 않고 있다.) 또한, schedule의 차이를 고려한 플러스 점수가 있는 것 같기도 하다. AL 동부에 속해 있는 Red Sox는 아무래도 Phillies보다는 강한 팀들을 상대로 게임을 하게 되므로, 이를 보정해 주었을 가능성이 있다. 이러한 schedule에 의한 보정이 어떻게 이루어지는지 파악이 될 경우에는, 여기에 추가로 업데이트를 하고자 한다.