(주: 이 글의 내용 및 첨부된 계산 파일은 일부 오류를 포함하고 있으므로, 내용을 수정하여 다시 올린 새 글을 참고하시기 바란다.)

 


Chase Utley : 2008년 NL MVP 투표에서는 고작 15위에 머물렀지만, WAR로 보면 Pujols에 이어 메이저리그 전체 2위였다. 올 시즌 타자 WAR 리스트에서도 Pujols와 Hanley Ramirez에 이어 3위를 달리고 있지만, MVP 투표에서는 또 10위권 밖으로 밀려날 것이다. 항상 실력에 비해 충분한 인정을 받지 못하고 있는, 심각하게 저평가된 플레이어이다.


타자가 팀의 득점에 기여하는 방법은 크게 보아 공격(타격), 수비, 주루가 있을 것이다. 그래서 좋은 타자를 이야기할 때 "공, 수, 주 3박자를 두루 갖췄다"는 표현을 사용하기도 한다.

각각의 타자에 대해서 이러한 득점 기여의 정도가 어느 정도인지를 측정하기 위해, 지금까지 공격, 수비, 주루의 측면을 차례로 검토해 왔다. 또한 비교 대상으로서 절대적 기준이 되는 Replacement Level 및 수비 포지션에 따른 조정 수준에 대해서도 살펴본 바 있다. 이 글을 쓸 때까지 다소 시간 간격이 있었으므로... 다시 한번씩 훑어 보시면 이해에 도움이 되시리라고 생각하여 링크를 걸어 본다.

1. 타격 기여 수준 : wOBA 및 wRAA
2. 비교의 절대적 기준 : Replacement Level
3. 수비 기여 수준 : UZR, TZ
4. 포지션별 차이 : Positional Adjustment
5. 주루 기여 수준 : 도루 성공과 실패

이를 종합하면 특정 타자의 전체 기여 수준, 혹은 그의 가치(Value)를 계산할 수 있는데, 이것이 바로 RAR(Runs Above Replacement level) 및 WAR(Wins Above Replacement level) 이다.

먼저 RAR을 구해 보면... 위의 다섯 가지를 차례로 더해 주면 된다.

RAR = wRAA + Replacement Level + UZR + Positional Adjusment + SB/CS Runs

이제 RAR을 WAR로 환산해야 하는데... 원칙적으로는 팀 전체 득점과 실점에 대해 해당 플레이이어의 RAR이 미치는 점수 변화 정도를 가지고 Pythagorean Expectation의 식에 넣어서 계산하는 것이 맞지만... Pythagorean 관련 포스팅에서 언급한 바와 같이, "10점 득점 = 1승"의 단순한 계산 방법이 의외로 높은 정확도를 가지므로, 계산의 편의를 위해 이를 활용하는 것이 좋을 것이다. 즉, 아래와 같이 쉽게 계산할 수 있다.

WAR = RAR/10

이제부터 실제 예를 통해서 자세히 살펴보자.
계산에 필요한 Raw Data는 Retrosheet, Baseball-Reference, Fangraphs의 세 사이트에서 얻었으며, 이후의 모든 계산은 직접 하였다. 계산에 사용한 엑셀 sheet를 첨부하였으므로, 계산 결과를 쉽게 확인하실 수 있을 것이다.


아래는 Chase Utley의 2008년 성적이다.

공격 : 159 G, 607 AB, 707 PA, 99 1B, 41 2B, 4 3B, 33 HR, 50 NIBB, 14 IBB, 27 HBP, 5 RBOE
수비 : 20.2 UZR
주루 : 14 SB, 2 CS


(NIBB : 고의사구가 아닌 볼넷, IBB : 고의사구, RBOE : 에러로 인해 타자가 출루한 경우)

순서에 따라 차례차례 계산해 보면...

1-1. Park Adjust

먼저 wOBA를 계산하기에 앞서서, 구장으로 인한 효과를 보정해 주는 것이 계산의 신뢰도를 높이는 데 도움이 될 것이다. Park Factor를 계산하는 방법은 여러 가지가 있고, 개인적으로는 어떤 방법이 가장 좋은지 아직 결론을 내리지 못하고 있다. 일단 여기서는 Fantasy411의 2006-08년 Park Factor를 빌려와서 사용하도록 하겠다. (단, RBOE의 Park Factor는 어디에서도 얻을 수가 없었다. 어차피 Utley의 RBOE가 5에 불과하여 Park Factor가 있더라도 그다지 영향은 없었겠지만...)



정밀한 조정을 위해서는 Utley의 경기별 홈구장을 일일이 찾아서 계산해야겠지만... 너무 품이 많이 들므로, 다음과 같은 간단한 방법을 사용하였다. 1) 타석의 절반은 홈, 절반은 원정에서 기록한 것으로 본다. 2) 원정구장들의 평균 Park Factor는 100이다. (실제로는 홈구장을 뺀 15개 NL 구장의 평균이므로 100에 근접한 값일 것이나, 큰 오차는 없으리라고 본다) 3) 따라서, 홈 구장 Park Factor의 50%를 Raw Stat에 적용하여 보정한다.

이렇게 조정한 Utley의 성적은 아래와 같다.
707 PA, 98 1B, 41 2B, 4 3B, 29 HR, 51 NIBB, 13 IBB, 27 HBP, 5 RBOE

홈런이 줄어든 것이 눈에 띈다. 나머지 기록은 거의 변화 없음을 알 수 있다.

1-2. wOBA 및 wRAA 계산

이전의 포스팅에서 wOBA를 소개할 때에 비하여, 지금은 wOBA를 더욱 신뢰하게 되었다. 최근 THT의 Colin Wyers가 수행한 연구에 의하면, 90년대 및 2000년대의 메이저리그 기록을 가지고 분석할 경우 wOBA가 EqA보다도 정확도가 좀 더 높은 것으로 나타났기 때문이다. 현재 세이버메트릭스 진영에서 득점 기여 수준을 측정하는 가장 우수한 스탯으로 여겨지는 wOBA와 EqA의 승부(둘 다 실제 득점과의 correlation이 0.97로 매우 높으므로, 정말 뛰어난 스탯들이다)에서 wOBA가 근소하게나마 더 우수한 것으로 판명되었기 때문에, 타자의 공격 기여도를 측정함에 있어 wOBA를 근간으로 삼는 것은 현재로서는 최선의 방법이라고 생각된다. 또한, wOBA가 EqA보다 훨씬 계산식이 간단하고 이해하기 쉽다는 것도 큰 장점이다.

계산식 및 이론적 근거는 이전의 포스팅을 참고하시고... Park Factor를 적용한 기록을 가지고 Utley의 wOBA를 계산한 결과는 다음과 같다. (앞에 첨부한 엑셀 sheet 참조)

(Park Adjusted) wOBA = 0.382

한편, 2008년 NL 전체 타격 기록을 가지고 구한 리그 평균 wOBA는 0.330이므로, 이를 이용하여 Utley의 wRAA를 구하면 다음과 같다. (엑셀 sheet 참조)

wRAA = 32.05 Runs

즉, 2008년 시즌의 Chase Utley는 NL 평균 타자에 비해 팀 득점에 32.05점 더 기여했다는 의미가 된다.


2. wRAA를 Batting RAR로 : Replacement Level의 설정

wRAA는 Runs Above Average라는 단어의 의미에서도 알 수 있듯이 리그 평균과 비교하는 스탯이므로, 이를 Replacement Level과의 비교로 조정하여 RAR(Runs Above Replacement leve)로 만들 필요가 있다. 이전부터 한 시즌을 기준으로 리그 평균 수준의 주전 선수와 Replacement Level의 땜빵 선수 차이에는 20점 혹은 2승 정도의 차이가 난다는 경험적 분석 결과들이 있었는데, 작년 말에 THT에 게재된 Sean Smith의 뛰어난 연구는 이를 다시 한 번 확인시켜 주었다. 즉, 600 PA를 기준으로 리그 평균과 Replacement Level의 사이에는 20점(20 Runs)의 기여 수준 격차가 있다는 것이다. 이러한 격차를 wRAA 값에 더해주면, RAR로 쉽게 환산된다.

Utley의 경우로 돌아가면, Utley는 707 PA를 기록했으므로, 707 PA에서 평균과 Replacement Level의 격차를 계산해 보면...

600/20 x 707 = 23.57 Runs

이 값이 Utley의 Replacenemt Level 값이 된다.


3. 수비 기여 수준 : UZR

이전의 포스팅에서 ZR을 개선한 합리적인 스탯으로 UZR, TZ(TZR), +/-를 소개한 바 있다. 그 포스팅에서 언급한 바와 같이, +/-는 유료 정보이며 연말에 발표되고, TZ의 경우 현역 메이저리거들에 대한 데이터는 아직 작업중인 상태여서 조회가 되지 않으므로, 현재로서는 UZR이 거의 유일한 선택이라고 할 수 있다. UZR은 Fangraphs에 거의 실시간으로 계속 업데이트 되므로, 지난 시즌의 결과물 뿐 아니라 현재 진행중인 시즌에 대해서도 누구가 쉽고 빠르게 정보를 얻을 수 있다. 뿐만 아니라, TZ의 창시자인 Sean Smith조차 UZR이 가장 뛰어난 수비 스탯이라고 인정하고 있으므로, TZ나 +/- 대신 UZR을 쓰는 것이 그다지 나쁜 선택은 아닐 것 같다.

여담이지만, 2000년대 초중반에 Cardinals는 UZR의 창시자인 MGL(Mitchel Lichtman)에게 상당히 큰 돈을 주고 UZR 데이터를 독점한 바 있다. UZR이 Fangraphs에 공개될 수 있었던 것은 이러한 독점 계약이 종료되었기 때문이다. 이런 것으로 보면 Cardinals도 이전부터 세이버메트릭스에 상당한 관심과 이해가 있었던 것 같다.

다시 본론으로 돌아가서... Utley는 2루에서 20.2 Runs, 1루에서 0.4 Runs를 기록하였으므로, 이를 간단히 더해주면 된다.

UZR = 20.6 Runs

이는 Utley가 2008년 시즌에 수비를 통해 실점을 20.6점 방지하는 정도의 기여를 했음을 의미한다.


4. Positional Adjustment

이전의 포스팅에도 있지만, 다시 한 번 포지션별 조정 점수를 정리해 보면 아래와 같다.

포수 : +12.5 Runs
유격수 : +7.5 Runs
중견수, 2루수, 3루수 : +2.5 Runs
좌익수, 우익수 : -7.5 Runs
1루수 : -12.5 Runs
지명타자 : -17.5 Runs


이 조정 점수는 162게임의 풀 시즌을 기준으로 만들어진 것임에 유의해야 한다. 162게임을 이닝으로 환산하면 1,458 이닝이 되므로, 실제 수비에 참가한 이닝을 1458로 나눠서 위의 조정 점수를 곱해 주면 실제 해당 시즌의 조정 점수가 될 것이다.

Utley는 2008년에 2루에서 1395 2/3 이닝, 1루에서 14이닝을 뛰었다. 따라서...

((2.5x1392.67) + (-12.5x14)) / 1458 = 2.27 Runs

이 점수가 Utley의 수비 포지션에 따른 최종 조정 점수가 된다.


5. 주루플레이의 기여 수준: 도루 성공과 실패

이전의 포스팅에서 밝힌 바와 같이, 도루 성공은 0.175, 도루 실패는 -0.467점의 가치를 지닌다. 개인적으로 그 밖의 주루 스탯에 대해 아직 신뢰하지 않고 있는 관계로, 단지 도루 성공과 실패만을 계산할 것이다.

Utley는 2008년에 14 SB, 2 CS를 기록하였으므로...

14x0.175 - 2x0.467 = 1.52 Runs

도루를 통해 1.52점 만큼 팀 득점에 기여하였다는 결론을 얻을 수 있다.


6. RAR 및 WAR의 산출

이제 모든 구성 요소의 계산을 다 했으므로, 지금까지 나온 값을 모두 더하면 타자의 총 기여 수준, 혹은 그의 가치(Value)가 된다.

RAR = 32.05(타격) + 23.57(Replacement Level) + 20.6(수비) + 2.27(포지션 조정) + 1.52(도루)
      = 80.01


득점 10점은 1승과 동일하므로,

WAR = RAR/10 = 8.0

즉, 거칠게 표현하자면, 2008년 Chase Utley는 8승짜리 플레이어였다는 것이다.

2008년 Phillies는 92승 70패를 기록하였는데, 만약 Utley 대신 1년 내내 Tadahito Iguchi나 Eric Brunett과 같은 Replacement Level 플레이어들로 2루를 돌려막기 했다면, Phillies는 아마도 84승 78패를 기록했을 것이라는 이야기이다. 이런 성적으로는 플레이오프에 나갈 수 없었을 것이고, 따라서 월드시리즈 우승도 할 수 없었을 것이다. 이것이 바로 진정한 스타 플레이어 한 명의 위력이다.

Fangraphs의 Utley 페이지를 보면, 2008년 그의 WAR를 8.1로 계산하고 있다. Fangraphs의 로직은 이 글에서 내가 설명해 온 바와 동일하다고 보면 된다. 0.1의 오차는 타격 기여도 계산에서 생겨난 것인데, 아마도 wOBA 계산 방법이 약간 다르고, Park Factor의 적용에도 차이가 있을 것으로 추정된다. 또한, Fangraphs는 주루를 따로 표시하지 않고, 타격에 합산하여 놓고 있다.


한편, 첨부된 엑셀 파일에는 작년 AL MVP였던 Dustin Pedroia의 WAR도 계산되어 있다. 다만, 이쪽은 Fangraphs가 6.6 WAR로 계산했는데 반해 엑셀 sheet에서는 5.8이 되어서, 차이가 0.8로 제법 크게 나타나고 있다. 실제 계산된 값을 보시면 알 수 있듯이 타격 기여 수준을 빼고는 값이 완전히 동일하므로... 역시 Park Factor의 차이가 작용하고 있는 것으로 추정된다. (Fangraphs는 어떤 Park Factor를 적용하고 있는지 명시하지 않고 있다.) 또한, schedule의 차이를 고려한 플러스 점수가 있는 것 같기도 하다. AL 동부에 속해 있는 Red Sox는 아무래도 Phillies보다는 강한 팀들을 상대로 게임을 하게 되므로, 이를 보정해 주었을 가능성이 있다. 이러한 schedule에 의한 보정이 어떻게 이루어지는지 파악이 될 경우에는, 여기에 추가로 업데이트를 하고자 한다.

Posted by FreeRedbird

댓글을 달아 주세요

  1. BlogIcon 반바스틴 2009.09.16 10:01 Address Modify/Delete Reply

    저는 좌익과 1루중에 어느포지션이 더 쉬운포지션일까 고민해왔는데 세이버에서는 간단히도 1루수가 훨씬 쉬운(?)걸로 판단하는군요

    저는 좌익이 더 편하지않을까 생각이 되었는데... 좌익과 우익의 차이도 없는것도 좀 놀랍군요

    • BlogIcon FreeRedbird 2009.09.16 14:20 신고 Address Modify/Delete

      포지션에 의한 조정 점수는 통계적 연구 결과가 누적됨에 따라 조금씩 변경되어 왔으며, 현재는 위에 언급한 수치가 대세입니다. 물론 약간의 이견이 존재하여, Sean Smith 같은 경우는 위의 수치에서 포수가 +10, 1루수가 -10으로 조정되어야 한다고 주장하기도 합니다. 이렇게 되면 1루수와 좌익수의 차이가 줄어들죠. 하지만 여전히 좌익수가 1루수보다 조금 더 어려운 포지션이라고 보는 점은 변함없습니다.

      우익수와 좌익수는... 선수 개개인으로 보면 차이가 조금씩 존재합니다. 아무래도 특정 선수의 수비 범위(range)라는 것이 전후좌우가 모두 동일하지 않기 때문에, 어떤 외야수는 왼쪽으로 잘 움직이고, 어떤 외야수는 오른쪽으로 잘 움직이는 등의 차이가 존재하죠. 따라서 개개인을 놓고 보면 좌익수와 우익수 중에 좀 더 적합한 포지션이 존재합니다. 또한 3루로 뛰는 주자를 잡기 위해 강한 어깨를 가진 외야수가 우익수 자리에 선호되죠. 하지만.. 개개인이 아니라 집합적으로 놓고 보면, 좌익수와 우익수의 수비적 가치 혹은 수비 난이도는 거의 동일하다고 볼 수 있습니다.

  2. BlogIcon 박상혁 2012.07.23 11:08 신고 Address Modify/Delete Reply

    이런글을 이제서야 보게되었네요.
    WAR에 대한 궁금증이 많이 풀렸습니다.
    ^^ 감사합니다.

타격 스탯과 Replacement Level에 이어, 이번에는 수비 스탯을 살펴보고자 한다.


1. FPct : Fielding Percentage

가장 단순하고 오랜 역사를 가지고 있으나 그만큼 엉성한 스탯이다. 단순히 해당 수비수가 얼마나 에러를 안 내고 수비했는지를 보여준다. 식은 아래와 같다.

FPct = (A+PO)/(A+PO+E)
A: Assists(다른 곳에서 아웃이 될 수 있도록 공을 던져준 것)
PO: Putouts(수비수 스스로 아웃을 기록한 것)
E: Error

당연히 에러를 안 내는 것이 좋은 수비이기는 하나... 에러를 안 내는 것이 전부가 아니라는 게 문제이다. 예를 들어, 수비수가 아무 것도 안 하고 가만히 서 있기만 해도 위의 식에 의하면 1.000으로 퍼펙트한 FPct를 얻을 수 있다. 날아오는 공에 손대지 않고 계속 가만히 있으면 모든 공이 다 안타로 처리될 뿐, 수비수의 에러가 되지는 않기 때문이다. 즉, 이 스탯은 단지 에러 발생만을 체크할 뿐, 수비수가 얼마나 넓은 범위를 커버하고 있는지 등에 대해서는 알 길이 없다.


2. RF : Range Factor

RF는 Bill James의 작품이다. FPct와는 달리 수비수가 실제로 얼마나 아웃을 만들기 위한 플레이에 관여했는지를 측정하기 위해 만들어졌다. 식은 아래와 같다.

RF = (PO+A)*9/Inn
Inn: Innings Played

단순한 식으로 계산이 쉽다는 막강한 장점이 있긴 한데... 너무 단순하다는 것도 문제가 된다. 실제로 몇 번의 수비 기회가 있었는지를 따지지 않고 결과적으로 아웃이 되거나 어시스트가 된 숫자만을 따지다 보니... 단지 우연히 많은 공이 자신에게 날아왔을 뿐인 수비수의 경우 본의 아니게(?) 좋은 RF 값을 가지게 된다. 게다가, 이름에서 알 수 있듯이 수비수의 수비 범위(Range)를 평가하기 위해 고안되었음에도 불구하고, 병살과 같이 Range와 별 상관없는 아웃을 구분하지 않음으로써 오차를 발생시키고 있다.


3. ZR : Zone Rating

Zone Rating은 80년대 말에 STAT,Inc.의 John Dewan에 의해 개발되었으며, 이후 2000년대 초반이 될 때까지 거의 유일한 "쓸만한 수비 스탯"으로 널리 사용되어 왔다.

먼저 아래의 그림을 보자.

(그림을 클릭하면 크게 볼 수 있음)

우선 필드를 C~X까지 22개의 구역으로 나눈다. (A, B, Y, Z는 파울지역이다)
다음 수비수의 포지션에 따라 각 구역을 "할당"한다.

내야와 외야를 나눠서 보는데, 내야수는 그라운드볼에만 책임이 있는 것으로 간주한다.
1루수는 V~X, 2루수는 O~T, 유격수는 H~L, 3루수는 C~F 지역으로 굴러가는 그라운드볼에 대해 각각 책임을 져야 하는 것이다. 여기서 G, N, U 등의 구역은 아무에게도 책임이 없음을 알 수 있다. 즉, 수비가 어찌할 수 없는 타구가 있다는 점을 인정하는 것이다.

한편, 외야수의 경우는 일정 거리 이상 날아간 라인드라이브와 플라이볼에 대해 책임이 있는 것으로 본다. 좌익수와 우익수는 그들의 구역으로 날아간 공 중에서 280~340 ft 사이에 떨어지는 라인드라이브와, 200 ft 이상 날아간 플라이볼을 처리해야 한다. 중견수는 자기 구역에 떨어지는 공 중에서 300~370 ft의 라인드라이브와 200 ft 이상의 플라이볼을 처리해야 한다. 이들의 수비 구역은 좌익수의 경우 F~H의 라인드라이브와 C~I의 플라이볼, 중견수의 경우 L~O의 라인드라이브와 K~P의 플라이볼, 우익수의 경우 S~U의 라인드라이브와 R~X의 플라이볼이다. 역시 내야와 마찬가지로, 외야에도 아무에게도 책임이 없는 J, Q 구역이 존재한다.

ZR은 기본적으로 각각의 수비수가 자신의 수비 구역에 떨어지는 공 중에서 얼마만큼을 아웃으로 처리했는가의 비율이 된다. 즉,

ZR = 자기 구역에서 아웃 처리한 공/자기 구역에 떨어진 공

그런데 수비 쉬프트 같은 것이 존재하므로, 어떤 때에는 자기 구역이 아닌 곳에서도 아웃을 잡아낼 때가 있을 것이다. 이런 경우는 자기 구역에서 아웃을 처리한 것처럼 간주하여 계산한다. 즉, 자기 구역 이외의 필드에서 아웃을 1개 잡았다면, 분모와 분자에 모두 1을 더해주는 것이다. 이런 방식은 여러 문제점을 야기하는데... 다른 구역에서 아웃을 잡을 정도로 수비 범위가 넓은 수비수가 그 능력을 충분히 인정받지 못하는 결과를 낳게 된다.

그리고, 수비수는 자기 책임 구역 내의 한 점에 서 있다가 공이 날아오면 그 쪽을 향해 뛰어가는 것이므로, 수비수의 정면으로 날아오는 공을 잡는 것과 자기 책임 구역의 맨 구석까지 뛰어가서 다이빙 캐치로 공을 잡는 것은 수비 난이도에 있어서 차원이 다르다고 할 수 있다. 그러나, ZR에서는 이러한 부분이 전혀 고려되지 않는다.

ZR에 대한 자세한 설명은 아래 링크를 참조.
http://www.baseballthinkfactory.org/files/dialed_in/discussion/what_is_zone_rating/


4. UZR : Ultimate Zone Rating

UZR은 ZR의 단점을 보완하기 위하여 Mitchel Lichtman이 개발한 것이다. 그는 인터넷에서 "MGL"이라는 필명으로 잘 알려져 있으며, <The Book>의 공동 저자이기도 하다.


(그림을 클릭하면 크게 볼 수 있음)

UZR은 위의 다이어그램에서 64개의 구역(Zone)을 이용한다. 이것은 모든 페어 지역과 1, 3루 주변의 파울 지역을 포함하는 것이다. 내야수는 그라운드볼에만 책임이 있고, 라인드라이브와 플라이볼은 외야수의 몫이라는 점은 기존의 ZR와 동일하다. 그러나, ZR과 비교하여 가장 큰 차이는, ZR이 단순히 어떤 지역에 날아간 타구의 갯수만을 가지고 계산하는 데 비해, UZR은 특정 구역에 떨어진 공이 얼마만큼의 가치를 가지는가를 점수로 환산한 값(Average Run Value)을 반영하여 계산한다는 것이다. (여기에는 각 구역에 떨어지는 공에 대하여 수비 난이도가 제각기 다르다는, 어찌보면 당연한 생각이 들어가 있다.) 따라서, ZR이 단순히 0과 1 사이의 값을 가지는 데 비해, UZR은 점수(Runs)로 나타나게 된다. 리그 평균은 0점이며, 마이너스는 평균 이하, 플러스는 평균 이상을 의미한다.

예를 들어, Yankees의 Derek Jeter는 2005년 AL 유격수 골드글러브를 수상하였다. 그러나, UZR에 의하면 그의 2005년 유격수 수비는 -12.6으로 나타나고 있는데, 이는 Jeter의 좋지 않은 수비로 인해 평균적인 유격수에 비해 2005년 시즌에 소속팀이 12.6점 더 실점하게 만들었다는 의미이다. Jeter는 오랜 세월동안 세이버메트리션들의 단골 공격대상이었는데, 이는 UZR로 보아도 별로 다르지 않다.

UZR은 2000년대 초에 창안된 이후 MGL 본인에 의해 몇 가지 중요한 부분들이 보완되어 왔는데, 이를테면 구장 효과(park effect)를 적용하여 보정하고, 좌타/우타의 타구 방향이 다른 것을 적용하였으며, 타구의 속도까지 측정하여 반영하였다. 뿐만 아니라, 투수의 그라운드볼/플라이볼 성향이 미치는 영향도 고려하였고, 특정 주자와 아웃의 상황에 따라 타자의 타격 방향이 영향을 받는 것(예를 들어 무사 주자 없음일 때와 무사 주자 1루일 때 타구의 경향이 달라지는 것 등)까지도 반영시켰다. 이쯤되면 꽤 훌륭하게 업그레이드가 된 셈이다. 다만 포수의 수비에 대해서는 아직 좀 부족한 부분이 있는데... 이쪽으로는 Tom Tango 등에 의해 현재도 활발하게 연구가 진행되고 있다.

업그레이드 UZR에 대해서는 아래 참조.
http://www.baseballthinkfactory.org/files/primate_studies/discussion/lichtman_2003-03-14_0/
http://www.baseballthinkfactory.org/files/primate_studies/discussion/lichtman_2003-03-21_0/


5. TZ (혹은 TZR) : Total Zone

Total Zone은 Sean Smith에 의해 탄생하였다. Sean Smith는 대표적인 플레이어 퍼포먼스 예상 툴인 CHONE Projection으로 특히 유명하다.

TZ도 Zone Rating을 개량하고자 하는 시도에 의해 탄생한 것이다. 타구가 누구의 수비 구역에 떨어졌는지, 그리고 해당 수비수가 그 공을 처리했는지가 주 관심 대상이 된다. 그 결과값은 UZR과 유사하게 리그 평균 수비수에 비해 몇 점이나 더 실점을 막았는지, 혹은 실점을 허용했는지를 숫자로 표시해 준다. 어느 해의 TZ값이 +10이라면 1년 동안 수비를 통해 팀이 실점을 10점 덜 하도록 기여했다는 의미이다.

Sean Smith는 그의 사이트(Baseball Projection)에서 TZ를 바로 확인할 수 있도록 작업중이라고 하는데... 아직 완성되지 않은 것 같다. 그는 Retrosheet의 게임 데이터를 가지고 1956년부터 지금까지의 모든 플레이어에 대해 TZ 값을 계산하는 엽기적인 노가다를 하고 있는데, 노가다의 내용에 대해서는 아래 링크를 참고하기 바란다.
http://www.hardballtimes.com/main/article/measuring-defense-for-players-back-to-1956/

노가다의 결과가 궁금하지 않은가? 1986년까지의 결과가 입력되어 있는 아래 엑셀 파일을 받아서 직접 확인해 보기 바란다. 이런 엄청난 파일이 작성자 본인에 의해 인터넷에 공짜로 공개되어 있다는 것은 정말 감동적인 일이 아닐 수 없다.

한편, Sean Smith는 마이너리그 플레이어들에 대해서도 TZ를 적용하는 방대한 작업을 수행하였는데, 그 결과물은 THT의 동료 세이버메트리션인 Jeff Sackmann의 사이트인 Minor League Splits에서 확인할 수 있다.

TZ는 UZR과의 통계적 상관 관계가 괜찮은 편으로 나타나고 있다. 재미있는 것은 Sean Smith 자신도 UZR이 가장 나은 수비 스탯이라고 생각한다는 점이다.
http://www.hardballtimes.com/main/article/measuring-defense-for-players-back-to-1956/


* 참고 : 이후 확인해 본 결과 Sean Smith가 노가다를 완료하여 1871년부터 2008년까지의 모든 자료를 사이트에 업로드해 놓은 것을 발견하였다. PbP 데이터가 없는 1953년 이전 자료에 대해서는 assist, putout, error 등으로 추정했다고 한다. 위의 링크를 클릭하여 Babe Ruth나 Rogers Hornsby와 같은 전설 속의 인물들을 만나 보시기 바란다. 이런 엄청난 자료를 공짜로 접할 수 있는 게 그저 황송할 따름이다...



6. John Dewan's +/- System(Fielding Bible)

ZR의 창시자인 John Dewan은 누구보다도 ZR의 한계를 스스로 잘 알고 있었으므로, 그것을 개량하고자 하는 노력을 계속하게 된다. 그렇게 해서 ZR의 업그레이드 버전으로 내놓은 것이 바로 Plus/Minus System이다.

이 시스템의 기본적인 원리는 UZR과 동일하다. 즉, 각 수비수가 책임을 지게 되는 "영역"이 존재하지만, ZR과 달리 영역의 내부는 동일하지 않으며, 수비하기 쉬운 지역과 어려운 지역이 존재한다. 쉬운 지역에 떨어진 공을 처리하지 못하면 감점되고, 어려운 지역의 공을 처리하면 점수를 얻게 된다. 이 점수는 UZR이나 TZ에서와 마찬가지로, 1년동안 소속팀의 실점을 줄이거나 늘리는 데에 얼마나 기여했는가를 의미한다. 리그 평균은 여기에서도 0점이다.

문제는... 이것이 유료 정보라는 것이다. 인터넷에 샘플로 공개되어 있는 자료는 2005 시즌이 마지막이다. 게다가 시즌이 끝나고 나면 1년간의 데이터를 모아서 자료가 발간되는 구조이므로, 돈을 주고 구해 볼 생각이 있어도 시즌 중의 데이터를 실시간으로 확인하기는 어려울 것이다.

시스템의 기본적인 원리에 대해서는 아래 참조. 이 사이트에서 샘플 자료도 볼 수 있다.
http://www.billjamesonline.net/fieldingbible/overview.asp



정리.

수비 스탯은 타격이나 투수 스탯에 비해 종류도 적고, 여전히 논란의 여지가 많이 남아 있다. UZR이나 TZ, +/- 등에서는 타구의 종류가 상당히 중요하게 취급되는데, 그라운드볼이 아닌 어떤 타구가 라인드라이브인지 플라이볼인지 결정할 때에는 일정 부분 기록자의 주관이 들어갈 수밖에 없다. 각 수비수가 어떤 구역에 책임이 있는지를 설정하는 부분에 대해서도 역시 이견이 있을 수 있으리라고 본다. 게다가, 외야수의 송구 능력이라든지, 포수의 수비 능력 등에 대해서는 어떤 수비 스탯도 아직 명확한 답을 내놓지 못하고 있다.

이러한 여러가지 불완전한 부분에도 불구하고, 수비 스탯은 분명 참고할 만한 가치가 있다. 좋은 수비수와 나쁜 수비수의 차이가 존재함은 명백하다. 과연 특정 수비수의 수비 능력이 리그 평균에 비해 어느 정도인지, 우리가 할 수 있는 범위 안에서 최선을 다해서 사실에 가깝다고 믿어지는 값을 도출하는 것이다.

앞에서 소개한 여러 스탯 중에서, 나는 UZR을 즐겨 사용한다. RF나 ZR은 아쉬운 점이 너무 많으며, TZ나 +/-의 경우는 실시간으로 현재와 과거의 기록을 조회하는 일이 불가능하다. 반면 UZR은 Fangraphs에 가면 2002년부터 오늘까지의 데이터를 무료로 조회할 수 있다. 이쯤 되면 UZR은 선택이라기보다는 필수라고 해야 할 것이다. 다른 대안이 없으니 말이다...

Fangraphs에서 특히 매력적인 것은 UZR/150인데, 해당 포지션에서 한 시즌에 150게임을 뛴다고 가정하고 그에 맞춰 조정한 값을 나타내는 것이다.


추가 정보 : 수비에 대한 또 다른 자료로 David Pinto의 PMR(Probabilistic Model of Range)이라는 것이 있다. 그래프로 수비수의 능력을 보여주는데... 재미있으므로 여기도 한 번 들러 보시길 권한다.
http://www.baseballmusings.com/archives/018666.php

추가 정보 2 : Baseball Prospectus는 FRAR, FRAA와 같은 자체적인 수비 스탯을 가지고 있다. BP 사이트의 정의에 의하면 이들도 역시 특정 수비수의 책임 구역에 떨어지는 공을 그 수비수가 얼마나 처리했느냐를 가지고 계산하는 것으로 되어 있는데, UZR이나 +/- 보다는 신뢰도가 다소 떨어지는 것으로 여겨지고 있다.
Posted by FreeRedbird

댓글을 달아 주세요

  1. BlogIcon lecter 2009.08.30 09:49 Address Modify/Delete Reply

    TZ는 처음 보는 스탯인데 다들 구하는 개념은 비슷하군요. 특히 Sean Smith의 노가다 엑섹 파일 잘 봤습니다 -_-

    • BlogIcon FreeRedbird 2009.08.31 17:18 신고 Address Modify/Delete

      UZR과 TZ, +/-의 기본적인 아이디어는 동일합니다. 물론 세부적으로 들어가면 데이터를 수집하고 가공하는 부분에 있어 조금씩 차이가 있지만요...
      인터넷은 정보의 접근성이라는 측면에서 정말 위대한 성취라고 생각이 됩니다. 약간의 웹서핑을 통해 이전에는 상상도 못하던 정보를 얻게 되죠... 이렇게 공짜 정보를 많이 이용할 수 있는 덕에 저도 블로그를 운영할 수 있는 것 같습니다.

  2. 홈런강탈 2010.03.05 16:29 Address Modify/Delete Reply

    팀으로 볼때는 숫자가 커지기 때문에 투수들의 BIPA(Defeff와 비슷한)나 이보다 관련성은 다르지만 ERA-FIP를 참고하는 것도 괜찮다는 생각을 했었는데요. 잠깐 팬그래프의 팀 UZR과 이를 비교해 보니까 비교적 유사한 점도 있었지만 역시 참고일 뿐이라는 생각이 들더군요. 물론 UZR이 수비를 정확히 측정한다고 볼수는 없지만요.
    단 BIPA나 FIP/ERA ,UZR의 미국, 한국 1위는 동일했습니다. 매리너스와 SK 와이번스. 한국야구에서는 UZR을 볼 수 없으니까 이런걸 보게되네요 ㅋ

    • BlogIcon FreeRedbird 2010.03.05 16:45 신고 Address Modify/Delete

      역시 국내야구에 PbP 데이터가 부실하다는 것이 수비스탯의 발전을 저해하는 주 원인이 되고 있습니다. 제가 최근에 한국야구팬사이트의 댓글에서 한번 언급을 했는데요... 당장 PbP 데이터가 생겨날 것 같지 않으니 차라리 Tom Tango가 만드는 Fan Scouting을 모방해서 우리가 직접 점수를 매겨 봄이 어떨까 합니다. 팬 한 명의 시각은 거의 전혀 공신력이 없습니다만, 예를들어 50명이 투표한 수비 능력은 꽤 신뢰할 만 합니다. (투표자가 많은 경우 Fan Scouting의 결과는 UZR이나 +/-와 제법 연관성이 높게 나타납니다.)

    • BlogIcon 홈런강탈 2010.03.06 00:42 Address Modify/Delete

      파크나 파울볼등의 커뮤니티나 많은 경기를 본 관중을 대상으로 타팀 선수들을 투표하는 방식이 되면 괜찮을 것 같다는 생각도 하네요. 저도 그런 생각을 해봤었는데 공신력도 그렇지만 그자체로 의미가 하네요.

      앞으로 PbP데이터나 WAR의 이벤트의 가치를 통계내 볼수 있을 만큼 야구시장의 크기가 커졌으면 좋겠다는 생각이 더 들긴 합니다 ㅎ

      글구 Statiz.co.kr 게시판에 WOBA,FIP 위주의 방향으로 바뀐다는 글이 올라왔더라구요. 이미 보셨을지도 모르지만 나중에 보시고 의견 남겨주시면 저도 배우는게 있을듯 ㅋ

  3. BlogIcon 다짱 2010.11.29 10:52 Address Modify/Delete Reply

    데이터가 꽤 많네요~ 잘보고갑니다

    UZ의 개념을 확인하려다가 URZ의 개념까지 알고가네요

  4. BlogIcon aslkjdqwe 2011.10.15 02:08 신고 Address Modify/Delete Reply

    UZR이나 TZ같은 스탯은 똑같은 능력을 가진 좋은 수비수지만 '우연히' 처리할 타구가 많아지면 더 높은 값을 가지게 되는 거 맞죠?

    • BlogIcon FreeRedbird 2011.10.15 00:15 신고 Address Modify/Delete

      이 글은 지금 다시 읽어보니 좀 수정할 필요가 있어 보이네요.. Total Zone이나 +/-에 대한 설명은 보충이 필요한 것 같습니다. 일부 잘못된 서술도 있는 듯 하고요...

      말씀하신 것처럼 우연히 타구가 그쪽으로 많이 날아가는 바람에 혜택을 볼 수도 있습니다. UZR은 이런 부분을 최소화하기 위해 타구의 방향에 일반적으로 영향을 미치는 변수들 - 투수의 좌완/우완 여부, 타자의 좌타/우타 여부, 투수의 그라운드볼 성향 등 - 을 고려하여 보정을 해 줍니다. 그렇다고 하더라도, 우연히 많은 타구가 몰려서 숫자가 왜곡될 가능성을 배제할 수는 없죠. 따라서, 샘플 사이즈가 중요해집니다. 샘플이 많으면 많을 수록 왜곡의 가능성은 적어지겠지요. 수비스탯을 볼 때 1년 데이터보다는 최근 3년 평균 등을 참고하는 것도 샘플사이즈의 문제 때문입니다.

  5. ㅇㅇ 2012.07.04 21:33 Address Modify/Delete Reply

    현재 UZR의 경우는 수비 쉬프트에 대해서 어떻게 처리할까요?
    뛰어난 수비수가 아님에도 좋은 쉬프트 덕분에 높은 수치를 기록할 가능성도 있지 않을까요?

    • BlogIcon FreeRedbird 2012.07.05 02:11 신고 Address Modify/Delete

      쉬프트는 현재 쉬프트의 정의 자체가 불명확하여 (얼만큼 이동하면 쉬프트일까요?) 수비 스탯에 반영하기가 어려울 것 같습니다. 결국 말씀하신 것처럼 노이즈를 증가시키고 있을 것 같은데요...

  6. 홈런왕 2012.07.24 23:39 Address Modify/Delete Reply

    DRS가 플러스/마이너스(필딩바이블)를 기반으로 한 수치죠?
    레퍼런스가 근래 토털존을 DRS로 교체했네요.
    UZR과 비교한다면 어떤가요?

    • BlogIcon FreeRedbird 2012.07.30 01:36 신고 Address Modify/Delete

      DRS와 UZR은 계산방법이 조금 다릅니다만, 근본이 되는 아이디어는 거의 동일합니다.

      +/-는 각 수비수가 같은 포지션의 평균적인 수비수에 비해 얼마나 많은 타구를 처리했는지를 나타내는 지표이고요. DRS는 이 +/- 값에 번트 처리 능력, 병살 처리 능력, 외야수의 송구 능력, 홈런타구를 아웃으로 처리하는 능력 등을 포함한 값입니다.

  7. 칼리프 2012.08.25 14:55 Address Modify/Delete Reply

    이 글 읽고 돌아다니다가 우연히 필딩 런 Fielding Run 이라는 수비 스탯을 보게 되었는데, 이건 어떤 개념인지 간략하게 알려주실 수 있으신가요? ( http://navercast.naver.com/contents.nhn?contents_id=5938) 대부분 UZR을 사용해서 그런지는 몰라도, 수비 스탯을 소개할 때 TZ나 +/-(Fielding Bible)은 한 번씩 언급하고 넘어가던데 유독 이 스탯에 대해서는 아무 설명이 없어서요.

    • BlogIcon FreeRedbird 2012.08.26 01:19 신고 Address Modify/Delete

      Fielding Runs는 Pete Palmer가 개발한 수비 스탯으로, 네이버캐스트에 나와 있는 것처럼 전통적인 숫자들(Putout, Assist, Double Play, Error 등)을 가지고 수비력을 측정하고자 한 지표 입니다.
      이 스탯은 문제가 많아서 요즘 잘 쓰지 않고 있습니다. 예를 들어, 공식을 보시면 분자가 .20(PO + 2A - E +DP)로 A 앞에만 2의 가중치가 붙어 있는데요. 어시스트가 풋아웃이나 에러, 병살보다 2배 더 중요하다는 근거는 전혀 없습니다. Palmer 본인도 설명한 적이 없고요.

  8. 한기범 2012.11.02 12:13 Address Modify/Delete Reply

    포스팅 잘 봤습니다. KBO의 스탯을 정리해보고 싶은데 레드버드님의 포스팅 많은 참고 되고 있습니다.

    UZR의 계산 방식이 한가지 궁금한데요, ZR과 UZR의 다이어그램이 다른데 UZR에서 각
    포지션마다 수비 책임범위가 써있지 않아서요. UZR에서는 어떻게 계산하는지 궁금합니다.

    • BlogIcon FreeRedbird 2012.11.07 08:45 신고 Address Modify/Delete

      정확한 책임범위는 공개되어 있지 않은 것으로 알고 있습니다. MGL의 영업 비밀이 아닐까 싶은데요. ㅎㅎ 혹 발견하게 되면 다시 포스팅하도록 하겠습니다.