영양가에 대한 논란

9회말 2사 2-2 동점에서 솔로홈런을 치면, 3-2가 되면서 게임이 끝난다. 이 홈런은 게임의 향방을 결정지은 "승리타점"이 된다. 하지만, 9회초 15-0으로 앞서 있는 상황에서 솔로홈런을 치면, 16-0이 된다. 15-0이나 16-0이나 어차피 이길 확률이 100%에 가까운 것은 마찬가지이므로, 이 홈런은 게임의 향방과는 거의 관계가 없는 홈런이다. 소위 홈런의 "영양가"가 다른 것이다.

HR, RBI, OBP, SLG, OPS, RC, wOBA, EqA 등 우리가 사용하는 거의 모든 스탯은 이 두 홈런을 똑같은 가치로 취급한다. 시즌 기록으로 생각하면, 한 시즌은 꽤 긴 기간이므로, "영양가 있는 순간"과 "영양가 없는 순간"은 상당 부분 상쇄될 것이다. 또한, 클러치 능력이라는 게 랜덤에 가깝다는 주장을 수용한다면, 올해에 "영양가 있는 적시타"를 유난히 많이 쳤다고 해서 내년에도 그러리라는 보장은 없는 것이다. 따라서, 일반적으로 선수의 능력을 판단할 때에는 위의 스탯들을 사용하는 것으로 별 무리가 없다.

하지만, 그 "영양가"를 구체적으로 따져보고 싶은 경우에는 어떻게 해야 할까? 예를 들어 특정 경기의 수훈 선수를 한 명 꼽고 싶다면? 위의 스탯들로는 해결이 불가능하다. 이럴 때 사용하면 좋은 것이 바로 WPA(Win Probability Added) 이다.


WE(Win Expectancy)에 대한 복습

WE에 대해서는 이미 이전 포스팅에서 소개한 바 있다.

Insidethebook 사이트에 공개되어 있는 표를 이용하여 다시 복습을 해 보자.

Inning: 6, Top

1B 2B 3B Out -4 -3 -2 -1 Tie 1 2 3 4
0 0.089 0.146 0.230 0.348 0.500 0.651 0.769 0.854 0.911
1 0.097 0.158 0.249 0.375 0.534 0.690 0.802 0.879 0.929
2 0.103 0.167 0.263 0.394 0.560 0.717 0.825 0.896 0.941
1B 0 0.078 0.128 0.204 0.310 0.448 0.594 0.717 0.812 0.881
1B 1 0.089 0.145 0.230 0.347 0.498 0.649 0.766 0.852 0.910
1B 2 0.099 0.161 0.253 0.380 0.542 0.697 0.808 0.884 0.932
2B 0 0.069 0.114 0.182 0.280 0.410 0.557 0.689 0.793 0.868
2B 1 0.083 0.136 0.216 0.327 0.473 0.625 0.749 0.840 0.902
2B 2 0.095 0.155 0.244 0.368 0.526 0.682 0.797 0.876 0.928
3B 0 0.058 0.098 0.158 0.247 0.369 0.517 0.662 0.774 0.856
3B 1 0.071 0.118 0.189 0.291 0.427 0.582 0.719 0.820 0.889
3B 2 0.093 0.152 0.240 0.362 0.519 0.675 0.793 0.873 0.926
1B 2B 0 0.062 0.102 0.164 0.253 0.372 0.506 0.633 0.742 0.827
1B 2B 1 0.078 0.127 0.202 0.308 0.445 0.590 0.711 0.806 0.877
1B 2B 2 0.092 0.151 0.238 0.358 0.513 0.665 0.780 0.862 0.917
1B 3B 0 0.051 0.085 0.139 0.218 0.327 0.463 0.602 0.720 0.813
1B 3B 1 0.067 0.111 0.178 0.274 0.402 0.548 0.682 0.786 0.864
1B 3B 2 0.089 0.146 0.231 0.349 0.500 0.652 0.770 0.855 0.912
2B 3B 0 0.046 0.078 0.127 0.201 0.303 0.431 0.569 0.695 0.795
2B 3B 1 0.062 0.102 0.165 0.255 0.377 0.517 0.652 0.764 0.848
2B 3B 2 0.087 0.143 0.226 0.341 0.490 0.639 0.757 0.845 0.906
1B 2B 3B 0 0.042 0.071 0.116 0.183 0.277 0.395 0.523 0.644 0.748
1B 2B 3B 1 0.060 0.099 0.159 0.245 0.362 0.495 0.622 0.731 0.818
1B 2B 3B 2 0.084 0.137 0.217 0.328 0.471 0.617 0.733 0.823 0.888


위의 표는 홈팀의 입장에서 6회초의 각 상황별로 기대 승률, 즉 Win Expectancy를 표시한 것이다. 즉, 6회초에 동점이고 무사에 주자가 없는 경우(위 표의 빨간색 글씨), 홈팀이 이 경기를 이길 확률은 정확히 0.5 이다. 하지만, 홈팀이 원정팀에게 1점 뒤진 상태에서 2사 3루의 상황을 맞이한 경우(위 표의 파란색 글씨), 홈팀이 최종적으로 이 경기를 이길 확률은 0.362 로 내려간다.

이 표는 Run Environment가 5.0인 상황, 즉 각 팀별로 경기당 평균 5점씩 득점하는 리그를 기준으로 한 것이다. 이 Run Environment가 바뀔 경우에는 WE Matrix도 바뀌게 된다.

아래 엑셀파일은 Tom Tango의 웹사이트에 걸려 있는 외부 링크에서 집어온 것이다. (출처는 여기)
파일 안에 있는 "BigTable" sheet가 바로 Run Environment=4.5일 때의 Win Expectancy 표이다. 위의 표와 6회초 부분을 비교해 보면 숫자가 조금씩 다름을 알 수 있다. 1점을 득점하거나 실점하는 경우 첨부파일의 WE가 더 크게 변하는 것을 볼 수 있는데, Run Environment가 작으므로(=게임당 평균득점이 적음) 1점의 위력이 더 큰 것이다.

WPA : Win Probability Added

WPA는 Win Probability Added의 약자로, 단어 안에 그 의미가 이미 드러나 있다. 즉, 기대 승률이 변화한 정도를 나타내는 것이다.

예를 들어... 위의 엑셀 파일에서처럼 Run Environment가 4.5인 상황에서 양 팀이 0-0이고, 6회초가 막 시작되고 있다고 가정해 보자. 이 상황에서 양팀의 기대 승률은 똑같이 50% 이다. 그런데, 6회초에 원정팀의 선두타자가 나와서 솔로 홈런을 쳤다고 하면, 점수는 0-1로 바뀌고, 노아웃 주자 없음 상황은 그대로 유지된다. 이제 홈팀이 1점을 뒤지게 되었으므로, 위의 표에서 -1점, 노아웃, 주자 없음을 찾아 보면 33.6%로 기대 승률이 내려갔음을 알 수 있다. 홈런 한 방을 맞음으로써 이 경기를 이길 확률이 16.4%가 줄어든 것이다. 따라서, 홈런을 친 선두타자는 +0.164의 WPA를 인정받게 되며, 반대로 홈런을 허용한 홈팀 투수는 -0.164의 WPA를 기록하게 된다.

이런 상황이 9회에서 발생했다면 어떻게 다를까? 9회초 노아웃에 무사, 동점인 상황에서 선두타자에게 홈런을 허용한 경우 홈팀의 기대 승률은 50%에서 16.2%로 크게 떨어진다. 여기에서 타자와 투수가 얻게 되는 WPA는 각각 +0.338, -0.338에 달한다. 6회초의 홈런에 비해 2배 이상 높은 것이다. 그만큼 같은 동점이라도 9회초의 홈런이 6회초의 홈런에 비해 훨씬 크게 승부를 좌우한다는 의미이다. 즉, 홈런의 "영양가"가 더 높은 것이다.

9회말, 홈팀이 3점 뒤진 상황에서 2사 만루에 타석에 들어섰다면, 이때 홈팀의 승률은 9.1%에 불과하다. 그런데, 여기서 만루홈런을 쳐서 역전승을 거뒀다면, 승리를 거두었으므로 기대승률은 100%가 되어 이 타석의 WPA는 +0.909에 달한다. 그야말로 영양가 만점이라고 할 수 있을 것이다.

이번에는 원정팀이 6점 앞서 있는 상황에서 9회초를 시작하는 것을 가정해 보자. 이때 홈팀의 승률은 0.3%에 불과하다. 여기에서 원정팀의 선두타자가 홈런을 쳐서 7점차로 벌어지면, 홈팀의 승률은 0.1%로 떨어진다. 같은 홈런이지만, 이 타석에서 타자의 WPA는 +0.002에 불과하다. 어차피 이길 확률이 매우 높은 상황이었으므로 영양가가 거의 없는 홈런이다. 같은 홈런인데도 이렇게 차이가 나는 것이다.

선수별 WPA는 Fangraphs에서 찾아볼 수 있다. 또한, Fangraphs는 메이저리그 정규시즌 및 포스트시즌에서 모든 게임의 WPA 변화를 실시간으로 중계해 준다.


WPA의 장점 그리고 한계

wRAA와 같은 스탯은 해당 선수가 팀 득점에 얼마나 기여했는지를 나타내는 스탯이지만, WPA는 해당 선수가 팀 승리에 얼마나 기여했는지를 나타내는 스탯이다. WPA가 높다는 것은 그만큼 팀 승리에 결정적인 공헌을 많이 했다는 것이고, 영양가 있는 활약을 했다는 이야기가 된다. (물론 162게임의 시즌은 상당히 긴 기간이므로 wRAA가 높은 타자는 아무래도 WPA가 높게 되기 마련이지만...) 만약 MVP를 순수하게 "팀 승리에 제일 많이 기여한 선수"에게 주고자 한다면, WPA가 가장 높은 선수에게 주는 방법도 고려해 볼 수 있다.

하지만, WPA는 그 배분 방식에 문제를 가지고 있다. 예를 들어 타자가 홈런을 친 경우, 승률의 변화를 그대로 타자의 WPA에 플러스 해 주고 투수의 WPA에 마이너스 해 주면 된다. 하지만, 타자의 타구가 수비수의 어설픈 수비로 인해 안타로 연결된 경우, 이 때 승률의 변화는 어떻게 계산해 주어야 할까? 타자는 어쨌든 안타를 만들었기에 변화한 승률 만큼을 플러스 WPA로 가져가지만, 수비측은 투수의 일방적인 책임으로 보기에는 어려운 상황이다. 이 경우에는 관측자의 주관적 판단에 따라 투수와 수비수의 책임 수준을 평가하여 마이너스 WPA를 배분하게 된다. 그런데, Fangraphs의 경우는 이러한 주관적 판단을 배제하고 수비측에서 받게 되는 모든 WPA를 투수에게만 부여하고 있다. 수비수의 호수비로 안타성 타구가 아웃이 되어 플러스 WPA를 얻게 된 경우에도 투수가 이득을 보고, 수비수의 어설픈 수비로 아웃될 타구를 안타로 만들어준 경우의 마이너스 WPA도 역시 투수가 모두 가져가게 되는 것이다. 이것은 관측자의 주관적 판단으로 인한 오류를 배제하는 장점이 있고, 또한 WPA를 리얼타임으로 계산할 수 있게 해 준다. 이렇게 쉽게 계산하기 때문에 Fangraphs가 메이저리그 시즌 중에 실시간으로 각 경기의 WPA 변화를 업데이트해 줄 수 있는 것이다.

또한, WPA는 과거의 팀 기여도를 살펴보는 데에는 유용하지만, 미래를 예측하는 데에는 상당히 부적절하다. 올해 유난히 결승타를 많이 올린 선수가 있다고 해서, 내년에도 특유의 클러치 능력을 발휘하리라는 보장이 전혀 없는 것이다.


Today's Music : Fleetwood Mac - Don't Stop (Live)



Don't stop thinking about tomorrow
Don't stop, it'll soon be here
It'll be better than before
Yesterday's gone, yesterday's gone

새해를 기념하여 좀 긍정적인 분위기의 곡을 골라 보았다.

새해 복 많이 받으세요...!!!


(이 글은 한국야구팬사이트에서도 보실 수 있습니다.)
Posted by FreeRedbird

댓글을 달아 주세요

  1. BlogIcon lecter 2010.01.01 13:20 Address Modify/Delete Reply

    FreeRedbird님 희망찬 새해 되시기 바랍니다 :)

  2. BlogIcon jdzinn 2010.01.03 05:41 신고 Address Modify/Delete Reply

    블로그 더욱 번창하시고 새해 복 많이 받으시길 바랍니다^^

    • BlogIcon FreeRedbird 2010.01.03 20:46 신고 Address Modify/Delete

      감사합니다. 새해에도 빠른 소식과 더 좋은 글로 찾아뵙도록 노력하겠습니다. 좋은 일 가득한 한해가 되시길...

  3. yuhars 2010.01.03 10:12 Address Modify/Delete Reply

    늦었지만 새해 복 많이 받으세요.~!

    • BlogIcon FreeRedbird 2010.01.03 20:47 신고 Address Modify/Delete

      새해에도 자주 들러 주세요... 감사합니다. 새해엔 복 많이 받으시고 대박 나십시오...!! 대박 나시면 함 쏘시고요... ^^


NLDS 2차전, 9회말 투아웃에서... Holliday가 공을 떨어뜨리는 장면.
다시 봐도 참 씁쓸하다...



Holliday가 저 공을 잡았다면, 물론 2차전은 Cardinals의 승리가 되었을 것이고, NLDS는 1-1이 되어 그 향방을 알 수 없게 되었을 것이다. 하지만, 한편으로 생각해 보면, 이 에러 뒤에도 Cardinals에게는 아직 기회가 있었다. 다음 타자를 아웃으로 처리하면 그만이었던 것이다. 하지만 Ryan Franklin은 후속타자들을 모두 출루시켜 결국 역전을 허용하고 말았다. 과연 Holliday의 에러는 얼마나 치명적인 피해를 입힌 것일까? Holliday 때문에 졌다고 말해도 되는 것일까?


아래의 논의는 Tom Tango 외 2인의 <The Book> 중 1장 "Toolshed" 편의 도움을 많이 받았음을 밝혀둔다.


1. 24가지의 상황

타자가 타석에 들어서서, 투수가 초구를 던지기 직전의 상황을 생각해 보자. 물론 도루와 같은 주루플레이도 일어나기 전이다. 얼마나 많은 상황이 가능할까?

우선 아웃 카운트를 생각할 수 있을 것이다. 노아웃, 1아웃, 2아웃의 세 가지가 있다. 3아웃에는 타자가 타석에 들어서지 않으므로 고려 대상이 아니다.

다음으로 어떤 누상에 주자가 있는지의 여부를 생각할 수 있을 것이다. 각각의 누상에 주자가 있을 수도 있고 없을 수도 있으므로, 1루, 2루, 3루에 대해 각각 "주자 있음"과 "주자 없음"의 두 가지 경우가 존재하는 셈이다.

아웃카운트와 주자에 대해 경우의 수를 계산해 보면,

3 x 2 x 2 x 2 = 24

이것이 타자가 타석에 들어섰을 때, 가능한 모든 상황의 갯수이다.


2. 24가지의 상황에 대한 Run Expectancy (기대 득점)

Tom Tango와 동료들은 1999년부터 2002년까지 4년간의 메이저리그 경기 기록을 모두 모아서, 위의 24가지 상황별로 정리하였다. 그리고, 각각의 상황에서, 해당 이닝이 3아웃으로 종료될 때까지 공격측이 득점한 점수를 모두 모아 보았다.

예를 들어, 무사 주자 1루의 상황은 4년 동안 44,552번 등장했는데, 이 상황 이후 해당 이닝이 종료될 때까지 공격측이 득점한 점수를 모두 더했더니 42,432점이었다. 그렇다면, 무사 주자 1루에서의 득점 평균은 아래와 같이 구할 수 있을 것이다.

42,432 / 44,552 = 0.953

이것이 바로 무사 주자 1루 상황의 기대 득점, 즉 Run Expectancy 이다. 철저하게 귀납적으로 계산된 결과임을 기억하자.

24개의 상황에 대해 모두 계산하여 표를 만든 결과는 아래와 같다.
원본 링크

RE 99-02 0 1 2
Empty 0.555 0.297 0.117
1st 0.953 0.573 0.251
2nd 1.189 0.725 0.344
3rd 1.482 0.983 0.387
1st_2nd 1.573 0.971 0.466
1st_3rd 1.904 1.243 0.538
2nd_3rd 2.052 1.467 0.634
Loaded 2.417 1.65 0.815




3. 홈런 1개의 Run Value, 아웃 1개의 Run Value

이제, 홈런이나 아웃과 같은 개별 사건이 공격측의 득점에 어떤 영향을 미치는지를 살펴보자.

무사에 주자 없는 상황에서, 타자가 타석에 들어섰다. 이 이닝에서 공격측의 평균 득점, 혹은 이 상황의 기대 득점은 위의 표에서 알 수 있듯이 0.555 이다. 이 때, 타자가 솔로 홈런을 쳤다면, 공격측은 1점을 득점하고, 상황은 아까와 똑같은 "무사 주자 없음"으로 돌아간다. 이 상황에서 순수한 기대 득점은 여전히 0.555 이지만, 이미 1점을 득점했으므로 이제 기대 득점은 0.555 + 1 = 1.555가 된다.

이 경우 순수한 홈런의 득점 가치(Run Value)는 어떻게 될까? 홈런의 "순수한 가치"는 해당 상황의 메이저리그 평균, 즉 보통의 타자가 보통의 방법으로 공격했을 때보다 몇 점이나 더 팀 득점에 "기여" 했는지를 평가하는 것이므로, "기말 기대 득점 - 기초 기대 득점 = 해당 사건의 순수한 가치"로 계산할 수 있다. 따라서, 이 경우는 1.555 - 0.555 = 1 이다. "솔로 홈런이 1점이니 당연한 결과가 아닌가?" 라고 생각하시는 분들이 계시겠지만... 이렇게 계산 결과와 상식이 일치하는 경우는 사실 얼마 되지 않는다.

이번에는 2사 주자 1, 3루인 상황을 가정해 보자. 이 상황의 Run Expectancy는 위의 표에서 알 수 있듯이 0.538 이다. 여기에서 타자가 3점 홈런을 쳤다면, 공격측은 3점을 득점하고 상황은 2사 주자 없음으로 바뀐다. "2사 주자 없음"의 기대 득점은 위의 표에서 0.117 이므로, 기말 기대 득점은 3 + 0.117 = 3.117 이다. 이 경우 순수한 홈런의 가치는?   3.117 (기말 기대 득점) - 0.538 (기초 기대 득점) = 2.579 이다.

3점 홈런을 쳤는데 왜 홈런의 가치가 3점이 아니고 2.579 일까? 아까 무사 주자 없음에서 솔로 홈런을 쳤을 때는 정확히 1점의 가치가 있다고 했는데... 도대체 무슨 차이가 있는 것일까?

무사 주자 없음의 상황에서 솔로 홈런을 치면 그 뒤에도 무사 주자 없음으로 같은 상황이 된다. 즉 점수가 났다는 것 이외에는 바뀐 것이 없는 것이다. 하지만, 2사 주자 1,3루에서 보통의 타자가 보통의 방법으로 공격을 했을 경우 평균적으로 0.538점을 득점하는 데 반해서, 3점 홈런을 친 후 2사 주자 없음으로 바뀌면 이제부터 기대할 수 있는 추가득점은 0.117점으로 크게 줄어든다. 메이저리그는 이 상황에서 평균 0.538점을 득점하지만, 홈런으로 인해 3점을 득점한 후 평균 0.117점을 추가득점하는 상황으로 바뀐 것이다. 위에서 이야기했듯이, "순수한 가치"는 평균적인 상황에 비해 팀 득점에 얼마나 기여를 했는지를 나타내는 것이므로, 기말에서 기초를 뺀 2.579가 이 경우의 순수한 3점 홈런의 가치가 된다.

이런 방법으로, 24가지의 상황에 대해 홈런의 순수한 가치를 모두 계산할 수 있을 것이다. 또한, 메이저리그에서 실제로 홈런이 발생한 상황이 24가지의 상황 중 어디에 해당하는지를 일일이 통계를 낸다면, 가중 평균을 구할 수 있을 것이다.

예를 들면, 1999-2002년의 4년 동안 무사 주자 없음 상황에서의 솔로 홈런은 5518번 나왔으며, 이 경우 솔로 홈런의 Run Value는 1 이다. 한편, 2사 주자 1,3루 상황에서의 3점 홈런은 312번 나왔으며, 이 경우 3점 홈런의 Run Value는 2.579 이다. 이런 식으로 24개의 상황을 전부 조사해서 가중 평균을 구하면 아래와 같이 계산할 수 있을 것이다.

[(1 x 5518) + ... + (2.579 x 312) + ... ] / (전체 홈런 수) = 1.397

24개의 모든 상황에 대한 표는 <The Book>에 실려 있으므로 참고하시기 바란다.

아래는 Tom Tango에 의한 Run Value 가중평균 계산 결과 중 일부를 소개한 것이다.

홈런   1.397
3루타   1.070
2루타   0.776
1루타   0.475
에러로 출루   0.508
몸에 맞는 공   0.352
볼넷(고의사구 제외)   0.323
폭투   0.266
도루 성공   0.175
일반적인 아웃 1개   -0.299
삼진아웃   -0.301
도루실패   -0.467



4. Scoring Distribution (득점 분포)

Tom Tango와 그의 동료들은 여기에서 그치지 않고, 지금까지 얻은 결과들을 바탕으로 Markov 연쇄모형(Markov Chains)을 이용하여 24개의 상황에 대한 기대 득점의 분포를 계산하였다. Markov Chains에 대한 자세한 설명을 여기서 다루는 것은 내 능력을 완전히 벗어나는 것으로... 관심 있으신 분들은 통계학 혹은 계량경제학 관련 서적이나 위키피디아 영문 링크를 참고하시기 바란다. 한글로 된 좋은 링크를 소개하기 위해 열심히 웹서핑을 했으나 찾는 데 실패했다. -_-;;; 솔직히 나 자신도 Markov 연쇄모형을 제대로 이해하고 있는 것 같지가 않다...

24개의 상황에 대한 표를 여기에 소개하기는 타이핑하기도 너무 힘들거니와 저작권법 위반이 될 것이다. 간단히 한 가지 경우만 소개하자면... 게임 당 평균 5점씩 득점하는 리그를 가정할 때, 무사 1, 2루에서의 기대 득점 분포는 다음과 같다.

0점 : 35.3%, 1점 : 22.0%, 2점 : 16.2%, 3점 : 13.1%, 4점 : 7.0%, 5점 이상 : 6.3%

Markov 연쇄모형의 강력함은 가정을 바꾸는 것에 따라서 계산 결과를 자유자재로 바꿀 수 있다는 것이다. 위의 경우에서, 보다 강력한 투수가 마운드에 등장하여 공격 팀의 득점 예상 수준이 게임당 5점에서 게임당 3.2점으로 떨어졌다고 하자. (아주 쉽게 말해 ERA 5.0인 투수를 ERA 3.2인 투수로 바꿨다는 의미이다. 물론 ERA라는 개념 자체가 갖는 근본적 문제가 있지만... 일단 여기서는 이정도로 넘어가자. 이것은 ERA 4.6인 투수를 ERA 2.94인 투수로 바꿨다는 의미이다. 왜냐하면, 실점과 자책점 사이에는 대략 "실점 x 0.92 = 자책점" 의 관계가 성립하기 때문이다.) 이렇게 투수를 바꾸면, 무사 1, 2루에서 기대 득점의 분포는 아래와 같이 변하게 된다.

0점 : 41.7%, 1점 : 22.8%, 2점 : 16.2%, 3점 : 11.0%, 4점 : 5.0%, 5점 이상 : 3.4%

확실히, 득점 특히 다득점 확률이 감소하고 있음을 알 수 있다.

타자를 리그 평균 타자에서 Albert Pujols로 바꾸는 등의 변화에 대해서도, 마찬가지로 득점 분포의 변화를 계산해 낼 수 있다.


5. Win Expectancy (기대 승률)

야구에서 이기기 위한 방법은 간단하다. 경기가 끝날 때까지 상대 팀보다 더 많이 득점하면 된다. 그렇다면, 특정 이닝의 특정 상황에서 홈팀이 이길 확률을 구하려면 어떻게 해야 할까? 현재 스코어를 고려하여, 경기가 끝날 때까지 홈팀이 원정팀보다 많이 득점할 확률을 계산하면 될 것이다. 앞에서 살펴본 Markov 연쇄모형을 이용하면, 어떠한 상황이라도 계산이 가능하다.

Win Expectancy의 표는 1회초부터 9회말까지 18개의 이닝에 대하여 각각 24개의 상황별로 홈팀의 승리 확률을 구한 것이다. 여기에 다 적기에는 너무 방대한데다가, 그 자체가 저작권법에 저촉되는 행위가 될 것이다. Tom Tango 자신이 인터넷에 공개한 샘플(6회초)만 옮겨 본다.

샘플 페이지 원본

Win Expectancy, by Game State

Inning: 6, Top

1B 2B 3B Out -4 -3 -2 -1 Tie 1 2 3 4
0 0.089 0.146 0.230 0.348 0.500 0.651 0.769 0.854 0.911
1 0.097 0.158 0.249 0.375 0.534 0.690 0.802 0.879 0.929
2 0.103 0.167 0.263 0.394 0.560 0.717 0.825 0.896 0.941
1B 0 0.078 0.128 0.204 0.310 0.448 0.594 0.717 0.812 0.881
1B 1 0.089 0.145 0.230 0.347 0.498 0.649 0.766 0.852 0.910
1B 2 0.099 0.161 0.253 0.380 0.542 0.697 0.808 0.884 0.932
2B 0 0.069 0.114 0.182 0.280 0.410 0.557 0.689 0.793 0.868
2B 1 0.083 0.136 0.216 0.327 0.473 0.625 0.749 0.840 0.902
2B 2 0.095 0.155 0.244 0.368 0.526 0.682 0.797 0.876 0.928
3B 0 0.058 0.098 0.158 0.247 0.369 0.517 0.662 0.774 0.856
3B 1 0.071 0.118 0.189 0.291 0.427 0.582 0.719 0.820 0.889
3B 2 0.093 0.152 0.240 0.362 0.519 0.675 0.793 0.873 0.926
1B 2B 0 0.062 0.102 0.164 0.253 0.372 0.506 0.633 0.742 0.827
1B 2B 1 0.078 0.127 0.202 0.308 0.445 0.590 0.711 0.806 0.877
1B 2B 2 0.092 0.151 0.238 0.358 0.513 0.665 0.780 0.862 0.917
1B 3B 0 0.051 0.085 0.139 0.218 0.327 0.463 0.602 0.720 0.813
1B 3B 1 0.067 0.111 0.178 0.274 0.402 0.548 0.682 0.786 0.864
1B 3B 2 0.089 0.146 0.231 0.349 0.500 0.652 0.770 0.855 0.912
2B 3B 0 0.046 0.078 0.127 0.201 0.303 0.431 0.569 0.695 0.795
2B 3B 1 0.062 0.102 0.165 0.255 0.377 0.517 0.652 0.764 0.848
2B 3B 2 0.087 0.143 0.226 0.341 0.490 0.639 0.757 0.845 0.906
1B 2B 3B 0 0.042 0.071 0.116 0.183 0.277 0.395 0.523 0.644 0.748
1B 2B 3B 1 0.060 0.099 0.159 0.245 0.362 0.495 0.622 0.731 0.818
1B 2B 3B 2 0.084 0.137 0.217 0.328 0.471 0.617 0.733 0.823 0.888

이 표는 홈팀의 입장에서 만들어진 것이다. 즉, 6회초에 동점이고 무사에 주자가 없는 경우(위 표의 빨간색 글씨), 홈팀이 이 경기를 이길 확률은 정확히 0.5 이다. 하지만, 홈팀이 원정팀에게 1점 뒤진 상태에서 2사 3루의 상황을 맞이한 경우(위 표의 파란색 글씨), 홈팀이 최종적으로 이 경기를 이길 확률은 0.362 로 내려간다.

이 표는 평균 5점을 득점하는 리그를 기준으로 만들어진 것이며, 양 팀 선수들의 능력이 모두 똑같다고 가정한 것이다. 투수와 타자의 능력, 야수들의 수비력, 구장 효과 등을 감안하여 보정해 주면, 더욱 정확도가 올라가게 된다.


6. 다시 처음으로 돌아가서... Holliday의 에러는 얼마나 치명적이었나???

이제 위에서 본 Win Expectancy를 바탕으로, NLDS 2차전에서의 Matt Holliday의 에러가 얼마나 치명적이었는지를 살펴보자.

Fangraphs는 매 게임별로 순간순간 Win Expectancy가 어떻게 변했는지를 거의 실시간으로 보여주는 훌륭한 시스템을 가지고 있다. 게다가 이 기대 승률은 리그 평균 득점을 반영하여 보정도 되어 있다. (이 사이트의 장점이나 활용도를 열거하자면 적어도 100가지는 꼽을 수 있을 것이다.)

NLDS 2차전의 기대 승률이 어떻게 변했는지 play by play로 보도록 하자. 여기를 클릭...!!

표를 보는 방법은 다음과 같다. 표에서 "WE" 열에 나타난 퍼센티지가 해당 플레이가 끝난 직후의 홈팀 기대 승률이다. 즉, 1회초가 시작되고 Julio Lugo가 아웃된 직후의 홈팀 기대 승률은 52.1%이며, Ryan과 Pujols까지 삼자범퇴 된 직후의 홈팀 기대 승률은 54.5%까지 올라가 있는 것이다.

이제 쭉... 내려가서 9회말로 가 보자. Manny Ramirez가 아웃되어 2사 주자 없음의 상황이 되고 James Loney가 타석에 들어섰을 때, Dodgers가 이길 확률은 4.1%에 불과하였다. 여기서 Loney는 좌익수 쪽으로 평범한 라인드라이브성 플라이를 날렸는데, Holliday가 이 공을 잡지 못하고 에러를 내면서 2루까지 출루하게 된다. 이 사건 직후 Dodgers가 이길 확률은 13.3%로 올라갔다. 이 숫자에 주목하시기 바란다. 치명적인 에러를 범했음에도 불구하고, Cardinals가 이길 확률은 여전히 86.7%로 매우 높은 상태였다는 것이다...!!!!  이렇게 높은 확률을 누가 다 까먹었을까? Ryan Franklin이다.

Holliday의 에러로 인해 Cardinals의 승리 확률은 95.9%에서 86.7%로 9.2% 낮아졌을 뿐이다. 여전히 아웃카운트 하나만 잡으면 끝나는 상황이라는 것은 변화가 없었다. 하지만 Franklin은 이후 네 명의 타자를 상대로 아웃을 전혀 잡지 못하고 볼넷 2개와 안타 2개를 내주면서 결국 역전을 허용하고 말았던 것이다.

아래의 그래프는 역시 Fangraphs에서 제공하는, 실시간 기대 승률 변화 그래프이다.


(그림을 클릭하면 크게 볼 수 있음)

9회 중간쯤에 있는, Cardinals 쪽으로 가장 경기가 기울었을 때가 바로 Ramirez 아웃 직후이다. 그 뒤에 살짝 올라간 부분이 바로 Holliday의 에러로 인해 경기가 Dodgers 쪽으로 약간 이동한 것이다. 나머지는 모두 Franklin의 공(?) 이다.

나는 여기에서 Franklin 한 명에게 책임을 뒤집어 씌우거나, Holliday가 잘했다고 칭찬하고자 하는 것이 아니다. 야구는 팀 경기이다. 예를 들어 Cardinals 타선이 2점 정도 더 득점했더라면, 9회에 2점을 주고도 여전히 이길 수 있었을 것이다. 패배의 책임은 팀 전체에게 있는 것이다.

팬의 입장에서 비싼 몸값의 스타 플레이어가 평범한 공을 놓치는 것을 보는 것은 물론 열받는 일이지만, 그 에러의 피해를 기대 승률의 측면에서 보자면 생각보다 훨씬 작은 것이었다. "그래도 Holliday가 공을 잡았다면 게임이 끝나는 것이지 않았는가???"라고 끝까지 주장하시는 분들께는... "만약 Franklin이 Loney를 삼진 처리했다면 애초에 에러가 발생할 리도 없지 않았겠는가??" 라고 반문하고 싶다. 다시 한 번 강조하지만, 패배의 책임은 팀 전체에게 있다. 굳이 가장 책임이 큰 한 명을 꼽으라면 주저하지 않고 Franklin을 선택하겠지만... 누구든 한 명에게만 모든 책임을 뒤집어씌우고 비난하는 것은 전혀 옳지 못하다.


이 글은 한국야구팬사이트에서도 보실 수 있습니다.


Today's Music : Thin Lizzy - The Boys Are Back in Town (Live)

https://www.youtube.com/watch?v=1FmPhJkdTwU

대중음악 역사상 최고의 명곡 중 하나이자, 최고의 라이브 퍼포먼스 중 하나...
(동영상을 직접 붙였더니 RSS Feed에 문제가 생기는 것 같아서... 그냥 링크를 걸었다.)
Posted by FreeRedbird

댓글을 달아 주세요

  1. BlogIcon Q1 2009.10.22 02:36 신고 Address Modify/Delete Reply

    기대치가 다른 거죠 뭐.. 프랭클린한테 삼진을 기대하는 거랑 할러데이한테 에러 안 하기를 요구하는 거랑...
    심리적으로모든 사람한테 후자가 타격이 더 큰 거 같아요.. 특히 팬들에게는요 ^^;;

    • BlogIcon FreeRedbird 2009.10.22 16:01 신고 Address Modify/Delete

      네.. 기대치가 다른 것도 사실이죠. 암튼 Franklin은 묘하게도 계약 연장 직후부터 삽질 모드로 돌아서서.. 단장 속이 많이 탔을 것 같습니다. 결국 포스트시즌까지도 삽질만 계속 했네요...

      에러는 에러고, Holliday는 계약할 수 있었으면 좋겠습니다...

  2. camomile 2009.10.27 13:23 Address Modify/Delete Reply

    세이버는 세이버일 뿐, 실질적으로 프랭클린의 멘탈에 할러데이의 에러가 영향을 크게 미쳤다고 봅니다. 클러치 에러 이후 투수가 무너지는 것은 야구 경기를 보다보면 흔히 볼 수 있는 일이죠. 게다가 무대는 포스트 시즌. 마운드엔 처음으로 포스트시즌에 서는 투수. 드라마가 일어날 수 있는 상황이 만들어져 있었던 것이죠.

    이래서 수비력이 중요한 것 같습니다. 눈에 보이는 실점 외에 팀사기, 팀 멘탈에 미치는 영향이 엄청나니깐요.

    • BlogIcon FreeRedbird 2009.10.27 16:01 신고 Address Modify/Delete

      아마도 정신적인 데미지 때문에, Holliday의 에러 이후 Cardinals의 승리 확률은 위에서 계산된 결과보다는 분명히 낮았을 것이라고 생각됩니다. 물론 얼마나 낮아졌는지를 측정할 수 있는 방법은 없겠습니다만...

      개인적으로는 Holliday의 에러 직후 어느 쪽이 이길 것이냐에 베팅을 한다고 하면 그래도 역시 Cards 쪽을 선택했을 것 같습니다. 야구는 분명히 멘탈 스포츠입니다만, 확률의 게임이기도 합니다. 저는 확률 쪽을 더 신뢰합니다. ^^